Golder Associates Ltd.

309 Exeter Road, Unit #1 London, Ontario, Canada N6L 1C1 Telephone: (519) 652-0099 Fax: (519) 652-6299

January 2008

SECTION

1.0	INTRO	DUCT	ΓΙΟΝ	1
2.0	SITE	DESCF	RIPTION	2
3.0	INVES	STIGAT	TION PROCEDURES	3
4.0	SITE	GEOLO	DGY AND STRATIGRAPHY	5
	4.1	Surfici	al Geology	5
	4.2	Bedro	ck Geology	5
	4.3	Site St	tratigraphy	5
		4.3.1	Pavement and Concrete	6
		4.3.2	Fill and Topsoil	6
		4.3.3	Sand and Gravel	7
		4.3.4	Clayey Silt	7
		4.3.5	Silt	7
		4.3.6	Sand	7
		4.3.7	Sandy Silt	8
		4.3.8	Bedrock	8
	4.4	Groun	dwater Conditions	12
	4.5 Structure Settlement			
5.0	MISC	ELLAN	EOUS	14

TABLE I - Summary of Estimated Foundation Settlements and Rock Data TABLE II - Comparison of Foundation Rehabilitation Measures

LIST OF ABBREVIATIONS LIST OF SYMBOLS LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY **RECORDS OF BOREHOLES**

FIGURE 1 - Site Location Map FIGURE 2 - Regional Physiography Plan, Caledonia FIGURE 3 - Regional Bedrock Geology, Caledonia FIGURE 4 - Sidewalk Settlement FIGURE 5 - Transverse Differential Settlement

DRAWING 1 - Borehole Locations and Soil Strata DRAWING 2 - Soil Strata - North Abutment and Piers 1 to 4 DRAWING 3 - Soil Strata - South Abutment and Piers 5 to 8

DETAIL FOUNDATION INVESTIGATION REPORT REHABILITATION OF THE ARGYLE STREET SOUTH BRIDGE FORMER HIGHWAY 6, CALEDONIA, SITE 9-2 GWP 3147-06-00, AGREEMENT NO. 3006-E-0049 MINISTRY OF TRANSPORTATION, ONTARIO - SOUTHWESTERN REGION

Submitted to:

Morrison Hershfield Limited **Consulting Engineers** 235 Yorkland Boulevard, Suite 600 Toronto, Ontario M2J 1T1

DISTRIBUTION:

8 Copies - Morrison Hershfield Limited

2 Copies - Golder Associates Ltd.

January 2, 2008

07-1130-023-0 Geocres No. 30M4-111

TABLE OF CONTENTS

PAGE

TABLE OF CONTENTS CONTINUED

APPENDIX A - Results of Previous Investigation **APPENDIX B - Photographs** APPENDIX C - Laboratory Test Data APPENDIX D - Settlement Risk Analysis Report

INTRODUCTION 1.0

Golder Associates Ltd. (Golder) has been retained by Morrison Hershfield Limited (Morrison Hershfield) on behalf of the Ministry of Transportation, Ontario (MTO) to carry out a detail foundation investigation at the site of the proposed rehabilitation of the Argyle Street South Bridge on the former Highway 6 over the Grand River in Caledonia, Ontario. The location of the bridge is shown on the Site Location Plan, Figure 1.

Consideration is being given to complete a rehabilitation of the existing bridge and foundations that would be suitable for a five to ten year period with the potential for full rehabilitation or the construction of a replacement structure to follow.

The purpose of the detail foundation investigation is to determine the subsurface soil, rock and groundwater conditions at the bridge site by drilling boreholes and carrying out in-situ tests and laboratory tests on selected samples. The terms of reference for the work are outlined in Golder's Total Project Management (TPM) for Detail Design Services proposal P61-3174 dated December 11, 2006. The work was carried out in accordance with our Quality Control of TPM Services Plan, Agreement No. 3006-E-0049, dated February 13, 2007 (updated July 11, 2007).

Morrison Hershfield provided Golder with drawings for the existing bridge. The existing MTO foundation investigation report available for the area of the site through Geocres (Geocres No. 30M4-101) was reviewed together with the April 1927 design drawings for the existing bridge. Bedrock is exposed in the riverbed at the existing bridge. The borehole data for the area of the site, including the results of previous investigations available for the dam and Canadian National Railway (CNR) bridge located approximately 600 metres upstream of the site, the recent Imperial Oil pipeline crossing of the Grand River approximately 1.6 kilometres upstream of the site and the recently constructed forcemain immediately downstream of the site, indicate that at least the upper 4 to 5 metres of the rock is highly weathered and fractured with gypsum seams and some cavities attributed to gypsum solutioning. Rock Quality Designations (RQDs) in this zone range from 0 to 20 per cent and are typically zero. In addition, existing borehole data indicate that approximately 3.5 metres of fill has been placed in the existing bridge approaches.

INVESTIGATION PROCEDURES 3.0

conjunction with the preparation of this report. This information is identified as follows:

• Geocres No. 30M4-101 and Golder Report No. 021-3233 entitled "Preliminary Foundation Investigation and Design, Rehabilitation or Replacement of the Argyle Street South Bridge Over the Grand River, Highway 6, Caledonia, Site 9-2, GWP 3805-01-00" dated April 1, 2004, revised May 3, 2004.

current investigation are provided in Appendix B.

deck. Boreholes 6 and 8 were drilled through the existing pier footings.

winch and a boom truck.

concrete and the sidewalks were patched with quick set, high strength concrete.

Record of Borehole sheets and on the Figures in Appendix C.

SITE DESCRIPTION 2.0

The existing bridge, constructed circa 1927, is a two lane, nine span structure carrying the northsouth directions of Argyle Street pedestrian and road traffic over the Grand River. The bridge is a designated heritage structure which was rehabilitated in 1984. Each span of the existing structure is about 22 metres long, for a total length of approximately 198.5 metres. The bridge is about 7 metres wide. In 2002, vehicle weight limits were posted since the bridge was found to be in an advanced state of deterioration that limited the load carrying capacity of the structure. Site photographs are provided in Appendix B.

Based on the design drawings available for the existing bridge and our observations during the field investigation, the existing structure is founded on spread footings bearing on the rock surface.

The existing deck surface is at about elevation 191.2 metres. The water level in the Grand River was at about elevation 185.7 metres during the current field investigation. All elevations in this report are referenced to geodetic datum.

The preliminary foundation investigation at the site conducted by Golder was reviewed in

- The records of the pertinent boreholes and related laboratory test results from the above noted report are attached to this report in Appendix A for reference purposes. The borehole locations are shown on Figure 1. Selected photographs of the rock cores obtained during the previous and
- During the previous investigation, boreholes 1 and 2 were drilled adjacent to the bridge abutments to depths of 17.1 and 17.4 metres, respectively. Boreholes 3 and 4 were drilled at the approaches to depths of 6.9 metres. Boreholes 5 through 8 were drilled from the bridge at or near to various pier locations to depths varying from 14.3 to 17.3 metres below the existing bridge
- The field work for the current investigation was carried out between April 30 and June 21, 2007 with a CME-45 drill rig mounted on skids supplied and operated by a specialist drilling contractor. The boreholes, numbered 101 to 106, were drilled through or near the existing pier footings to depths varying from 15.7 to 17.3 metres below the existing bridge deck. Boreholes 101, 102, 103 and 104 were drilled from the west sidewalk while boreholes 105 and 106 were drilled from the east sidewalk. The skid mounted rig was moved to the various locations with a
- All of the boreholes were backfilled and abandoned in compliance with MTO and Ontario Regulation 128/03 recommended procedures. The pier footings were backfilled with premixed
- The field work was supervised on a full-time basis by a senior member of our engineering staff who located the boreholes in the field, directed the drilling, sampling and in-situ testing operations and logged the boreholes. The soil and rock samples were identified in the field, placed in labeled containers and transported to our laboratory in London, Ontario for further examination. The rock cores were sent to our Mississauga laboratory where they were logged in detail by a geologist who is familiar with the geology of the area. In addition, the total core recovery (TCR), solid core recovery (SCR) and RQD were measured and unconfined compressive strength testing was carried out on four NQ size samples of the gypsiferous rock. The results of the field and laboratory testing from the current investigation are shown on the

- 3 -

Golder Associates

3

4

5

6

7

8

North Approach

South Approach

Between Piers 3 & 4

Pier 7

Between Piers 5 & 6

Pier 2

-

-

8.87

9.52

7.71

11.14

SITE GEOLOGY AND STRATIGRAPHY 4.0

Surficial Geology 4.1

The surficial soil deposits are comprised of the Wentworth Till sheet, a sandy silt to clayey silt till deposit with irregular interbeds of silty to sandy deposits. This till sheet was transported in a southwestward direction across the Caledonia area by glaciers that emanated from the Lake Ontario basin. This direction of glacial movement is indicated by the numerous elongate northeast to southwest orientated drumlin ridges comprised of till that dot the area as shown on Figure 2. The advance of the glacial ice associated with the deposition of the till also scoured the bedrock surface, greatly influencing the present bedrock surface topography that underlies the area.

Much of the area within the Grand River Valley was inundated by post glacial ponds that deposited a blanket of glaciolacustrine clayey silt and silty clay over much of the low areas. These deposits comprise the Haldimand Clay Plains that are characteristic of the Grand River Valley. The clay sequence may also contain local interbedded zones of silt and sand. Locally, the drumlin ridges tend to protrude through the clay.

The main drainage courses which pass through the region, such as the Grand River, contain recent alluvial deposits of clays, silts and sands associated with the stream channels and adjacent flood plains. In the area of the site, the Grand River Valley is fully incised through the overburden to expose the underlying rock in the riverbed.

Bedrock Geology 4.2

The site is underlain by Silurian-age dolomite, shaley dolomite and shale of the Salina Formation. The Salina Formation hosts the gypsum deposits of the Grand River Valley. The Salina Formation is underlain by the Guelph Formation. The strata are near flat lying with a gentle southward dip of approximately 0.5 per cent.

The Salina Formation consists of six members (Members A, B, C, E, F and G). The D Member (halite salt strata of the Salina Formation) was not deposited in this area. The C Member is present in the area of the site. The regional bedrock geology is shown on Figure 3.

Site Stratigraphy 4.3

The detailed subsurface soil, rock, surface water and groundwater conditions encountered at the borehole locations, together with the results of the laboratory tests carried out on selected soil samples, are given on the attached Record of Borehole sheets following the text of this report and in Appendix A2. The stratigraphic boundaries shown on the borehole sheets and Drawing 1 are

Borehole	Component of	Borehole	Location	Collar	Overburg Concrete Interfa	den or e/Rock ace	Cored
Number	Structure	Northing (m)	Easting (m)	Elevation (m)	Elevation (m)	Depth (m)	Length (m)
101	Pier 1	4 770 440.9	267 966.2	191.15	183.96	7.19	11.10
102	Pier 3	4 770 399.0	267 951.7	191.40	183.96	7.44	9.03
103	Pier 5	4 770 357.1	267 937.3	191.43	183.93	7.50	9.48
104	Pier 8	4 770 292.3	267 915.0	191.23	184.71	6.52	11.93
105	Pier 6	4 770 330.8	267 939.1	191.34	183.84	7.50	9.69
106	Pier 4	4 770 373.0	267 953.7	191.48	184.04	7.44	10.40
1	South Abutment	4 770 263.3	267 921.1	189.69	183.65	6.04	11.06
2	North Abutment	4 770 467.2	267 971.4	190.23	184.59	5.64	11.76

4 770 415.8 Boreholes 3 and 4 were approach boreholes and, thus, were not cored.

4 770 478.9

4 770 251.9

4 770 387.3

4 770 313.9

4 770 342.4

In addition, a survey of the bridge was conducted to determine the current profile along the bridge and to estimate the post construction settlements. These findings are summarized in Table I and on Figures 4 and 5. The settlements were estimated from a comparison of the survey data and the original bridge design drawings.

267 978.8

267 912.7

267 947.7

267 922.9

267 944.4

267 968.9

190.07

190.86

191.42

191.27

191.44

191.23

_

-

184.59

184.44

184.89

183.85

-

-

6.83

6.83

6.55

7.38

inferred from non-continuous sampling and observation of limited core recovery and, therefore, may represent transitions between soil and rock types rather than exact planes of geological change. Subsurface conditions will vary between and beyond the borehole locations.

In summary, the subsoils at the abutments and approaches generally consist of variable thicknesses of pavements, fill and topsoil materials to between elevation 186 and 189 metres. These deposits are underlain by generally thin deposits of sand and gravel, sandy silt, silt, clayey silt and sand over the bedrock. At the pier locations, the bedrock is exposed below about 0.4 to 0.6 metres of water and/or thin sandy silt deposits. The bedrock surface was encountered at elevations between 183.6 and 184.9 metres at the borehole locations.

Locations and elevations of the borings, together with the interpreted stratigraphical profiles, are shown on the attached Drawing 1.

Detailed descriptions of the subsurface conditions encountered in the boreholes put down during both phases of the investigation (October/November 2003 - preliminary design and April/May 2007 – detail design) are provided in the following sections.

4.3.1 Pavement and Concrete

Boreholes 5, 8, and 101 through 106 were advanced through the existing 140 to 200 millimetre thick concrete sidewalks. Boreholes 6, 8, 103, 105 and 106 were cored through the concrete footings of the existing bridge piers. The footings were 790 to 1430 millimetres thick. The underside of footings was at approximately elevation 183.8 to 184.4 metres. Possible concrete was encountered but not recovered in borehole 101. Laboratory testing of the concrete cores indicated compressive strengths of 23 to 50 megapascals with an average of about 36 megapascals.

A 100 millimetre thick paving stone layer was encountered at the surface of borehole 2. Boreholes 3 and 4 encountered about 150 and 200 millimetres of asphalt at the north and south approaches, respectively.

4.3.2 Fill and Topsoil

A 430 millimetre thick fill layer of cobbles and boulders was encountered from elevation 185.3 metres over the possible concrete pier footing in borehole 101. A 160 millimetre thick layer of sandy silt fill was encountered at elevation 185.4 metres over the concrete pier foundation in borehole 105. Possible rock fill was encountered at elevation 185.3 metres but not recovered in borehole 102.

January 2008

At the north approach, the asphalt was underlain by about 1.1 metres of granular base materials over 1.4 metres of firm clayey silt fill and 0.3 metres of topsoil. At the south approach, the asphalt was underlain by about 0.7 meters of granular base materials. At boreholes 1 and 2, advanced adjacent to the south and north abutments, respectively, layers of compact silty sand and sandy silt fill and stiff to hard clayey silt fill were encountered to depths of about 3.5 to 4.1 metres below ground surface or approximately elevation 186.2 metres. Also, 0.8 metres of silty sand fill with concrete, wood, gravel, cobbles and boulders was encountered over the concrete pier foundation in borehole 8. Standard penetration testing in the fill/topsoil materials indicated N values between 5 and 36 blows per 0.3 metres penetration. The fill materials had water contents of about 5 to 37 per cent with an average of about 15 per cent. Figure A-1 in Appendix A2 shows a gradation curve for the sandy silt fill materials recovered from borehole 4.

4.3.3 Sand and Gravel

A 1.5 metre thick layer of dense sand and gravel was encountered at elevation 186.1 metres beneath the fill materials in borehole 2. The sand and gravel deposit had a single N value of 37 blows per 0.3 metres penetration and a water content of about 9 per cent.

4.3.4 Clayey Silt

A 0.6 metre thick layer of stiff clayey silt was encountered at elevation 187.2 metres beneath the topsoil in borehole 3. The clayey silt deposit had a single N value of 9 blows per 0.3 metres and a water content of about 32 per cent.

4.3.5 Silt

Beneath the sandy silt in borehole 1 and the fill in borehole 4, silt layers 0.3 to 1.6 metres thick were encountered at elevation 185.3 metres and 186.7 metres, respectively, above the bedrock. The silt layer in borehole 1 had standard penetration test N values of 37 blows per 0.3 metres penetration and 70 blows per 150 millimetres penetration. The water contents were about 11 and 17 per cent.

4.3.6 Sand

Beneath the clayey silt, borehole 3 encountered a 0.9 metre thick sand deposit at about elevation 186 metres over the layers of sandy silt material. The sand deposit had a standard penetration test N value of 22 blows per 0.3 metres penetration based on a single standard penetration test. The water content of the sand sample collected was about 18 per cent.

4.3.7 Sandy Silt

Beneath the fill in borehole 1 at elevation 186.2 metres and in boreholes 3 and 4 at elevations 185.7 and 186.4 metres, respectively, deposits of compact to dense sandy silt were encountered. Where fully penetrated in borehole 1, the sandy silt layer was about 0.9 metres thick. Boreholes 3 and 4 were terminated at a depth of 6.9 metres in dense sandy silt layers after exploring those layers for some 2.4 metres. Also, a 0.3 metre thick deposit of sandy silt was encountered at elevation 184.9 metres over the bedrock in the river bed at borehole 5. The sandy silt layers had standard penetration test N values of 22 to 49 blows per 0.3 metres penetration and water contents between about 8 and 22 per cent. Figure A-2 in Appendix A2 shows a gradation curve for the sandy silt recovered from borehole 1.

4.3.8 Bedrock

A Golder geologist, who is familiar with the geology of the Caledonia area, logged the rock cores from boreholes 101 to 106 as well as boreholes 1, 2, 5, 6, 7 and 8 from the preliminary foundation investigation. These boreholes were drilled to characterize the founding conditions for the existing and proposed bridge abutments and piers. The rock was continuously cored with a swivel type double tube NQ size wire line core barrel, except for a 1 metre interval in borehole 2 where two standard penetration test samples were obtained in the rock. The core was carefully removed from the barrel following each run and care was taken to identify machine breaks, which are not counted in the SCR and the RQD values. Detailed descriptions of the bedrock are provided on the Record of Borehole sheets and the bedrock stratigraphy is shown on Drawings 1, 2 and 3. The following is a brief summary of the rock conditions.

The rock cores consisted of beds of gypsum, shale, dolostone and mudstone as detailed on the Record of Borehole sheets. The predominant rock strata have been identified as:

- Unit 1 Shale to Dolomitic shale
- Unit 2 Dolostone/Gypsiferous Dolostone
- Unit 3 Gypsum
- Unit 4 Gypsiferous Mudstone

and these units are shown on Drawings 1, 2 and 3.

Recovery in the upper weathered portions of the boreholes was very low, which is typical of the area, and attributed to gypsum dissolution, normally characterized by voids and/or vuggy intervals. Poor recovery is not attributed to the drilling techniques. No sudden loss of drill pressure or other evidence of large voids in the rock was noted during drilling and coring.

In order to estimate the extent of the highly weathered/solutioned upper bedrock zone, depths from inferred top of bedrock to rock with TCR greater than 80 per cent at each borehole are tabulated below:

Borehole Number	Location	Bedrock Surface Elevation (m)	Approximate Elevation of >80% Total Core Recovery (m)	Inferred Thickness of Highly Weathered/ Solutioned Upper Bedrock (m)
101	Pier 1	183.96	177.0	7.0
102	Pier 3	183.96	178.7	5.3
103	Pier 5	183.93	180.3	3.6
104	Pier 8	184.71	180.1	4.6
105	Pier 6	183.84	180.2	3.6
106	Pier 4	184.04	180.3	3.7
1	South Abutment	183.65	180.2	3.5
2	North Abutment	183.59	177.3	6.3
5	Between Piers 3 & 4	184.59	179.5	5.1
6	Pier 7	184.44	180.2	4.2
7	Between Piers 5 & 6	184.89	178.8	6.1
8	Pier 2	183.85	178.6	5.3

Dolomitic Shale (Unit 1)

Two distinct beds of dolomitic shale were encountered in the boreholes. The upper bed was encountered from elevation 180.7 to 184.7 metres in all boreholes in which rock was cored. The upper dolomitic shale bed was slightly to completely weathered, light to dark grey, and was encountered beneath the silt in borehole 1, beneath the sandy silt in borehole 5, and beneath the concrete footings of the existing bridge piers in boreholes 6, 8, 101, 102, 103, 105 and 106, beneath the dolostone in boreholes 2, 6, and 7 and beneath the dolostone boulders in borehole 104. The upper dolomitic shale was highly fractured and classified as weak to moderately strong. The RQD measured in the upper dolomitic shale ranged from 0 to 60 per cent, but was generally less than 20 per cent, with only 30 per cent of the runs having RQDs of greater than zero. The measured TCR values of the upper dolomitic shale ranged from 0 to 100 per cent and the SCR ranged from 0 to 80 per cent. The upper dolomitic shale is considered to be within the weathered/solutioned zone. It is considered that this bed originally contained significant amounts of gypsum and would probably have been originally described as gypsiferous dolostone.

A bed of lower dolomitic shale was encountered between elevations 173.2 and 175.8 metres below the lower gypsum in boreholes 1 and 2. The lower dolomitic shale bed was fresh, grey, medium strong and thinly laminated. The RQD measured on the lower dolomitic shale ranged from 8 to 33 per cent with TCR values ranging from 75 to 87 per cent and SCR values ranging from 50 to 95 per cent.

January 2008

Shale (Unit 1)

A bed of slightly weathered to fresh, blue-grey, fine grained, weak shale to gypsiferous mudstone was encountered in borehole 104 beneath the dolomitic shale. An intact sample of the weak shale to gypsiferous mudstone had a compressive strength of 22 megapascals based on the results of the compressive strength testing. These results are presented on Figure C-1 of Appendix C. This material has a water content of 5 per cent and a unit weight of 23.1 kilonewtons per cubic metre.

A bed of green shale was encountered in borehole 106 beneath the dolomitic shale. Beds of fresh, grey, medium strong non-dolomitic/calcareous shale were encountered in borehole 1 beneath strata of dolomitic shale, gypsum and dolostone. A bed of grey shale to light grey dolomitic shale was encountered beneath the dolostone in borehole 8.

The measured TCR values of the shale ranged from 59 to 100 per cent, the SCR ranged from 0 to 83 per cent and the RQD ranged from 0 to 77 per cent. Typically, the shale beds were present between elevations 180.1 and 181.1 metres and marked the transition zone between the weaker solutioned zone and the underlying stronger, more intact rock.

Dolostone (Unit 2)

Dolostone boulders were encountered on the riverbed at borehole 104. Beneath the mudstone in borehole 102, a bed of slightly weathered to fresh, greenish brown and white, weak to moderately strong dolostone was encountered. Beds of slightly weathered to fresh, light brown, laminated, vuggy dolostone were encountered beneath the sand and gravel and beneath the gypsum in borehole 2, the upper dolomitic shale in borehole 6 and beneath the cobbles and boulders in borehole 7. The dolostone was classified as strong in borehole 2 and medium strong in borehole 7. Dolostone fragments were recovered in borehole 6.

The measured TCR values of the dolostone ranged from 0 to 100 per cent, the SCR ranged from 0 to 100 per cent and the RQD ranged from 0 to 75 per cent. Within the weathered/solutioned upper bedrock zone, the RQD measured 0 to 43 per cent with SCR values less than 30 per cent and TCR values of less than 57 per cent.

Gypsiferous Dolostone (Unit 2)

A bed of slightly weathered to fresh, grey-brown to grey-brown and white to light brown, weak to moderately strong gypsiferous dolostone was encountered beneath the shale in borehole 1, the gypsum in boreholes 1, 5, 6 and 8, dolomitic shale in boreholes 5, 6, 7, 8, 101 and 103, beneath the dolostone in borehole 102, beneath the gypsiferous mudstone in boreholes 104 and 105, and beneath the shale in borehole 106.

Based on the recoveries obtained in the boreholes, the upper solutioned zone in the gypsiferous dolostone is above elevation 175.6 to 180.8 metres. The measured TCR values of the upper solutioned zone ranged from 22 to 57 per cent, the SCR ranged from 3 to 43 per cent and the RQD ranged from 0 to 43 per cent. Only one run had an RQD of greater than zero. Below elevation 175.6 to 180.8 metres, the intact rock had TCR values of 83 to 100 per cent, SCR values of 42 to 90 per cent and RQD values of 32 to 83 per cent.

The results of laboratory testing indicate compressive strengths of 24 to 25 megapascals for intact samples of the gypsiferous dolostone. The unit weight varied between 22.6 and 23.3 kilonewtons per cubic metre. The results of the unconfined compression tests are presented on Figures C-2 and C-3. Water contents of 4 and 9 per cent were measured on samples of the gypsiferous dolostone.

Gypsum and Shaley Dolostone (Unit 3)

A bed of fresh, white, medium strong, nodular to coliform gypsum and strong, fresh, light brown, laminated shaley dolostone with nodular gypsum was encountered between beds of gypsiferous dolostone in borehole 8. TCR, SCR and RQD values of 96, 50 and 41 per cent, respectively were measured in the core from this material.

Gypsum (Unit 3)

Beds of weak to medium strong gypsum were encountered beneath the shale, dolostone and dolomitic shale in borehole 1 and beds of strong gypsum were found beneath the dolomitic shale and dolostone in borehole 2. Nodular gypsum with dolomitic shaley partings or bands was encountered beneath the dolostone in boreholes 5 and 6.

The measured TCR values of the gypsum ranged from 59 to 100 per cent, the SCR ranged from 0 to 95 per cent and the RQD ranged from 0 to 67 per cent.

Gypsiferous Mudstone (Unit 4)

Beneath the dolomitic shale, a bed of slightly weathered to fresh, grey to grey-brown to greybrown and white, weak to moderately strong gypsiferous mudstone was encountered in boreholes 102 to 105. The mudstone in boreholes 102 and 103 is within the upper solutioned bedrock zone. TCR, SCR, and RQD values of 45 to 75 per cent, 20 to 48 per cent and 13 to 47 per cent, respectively, were measured in this zone. The mudstone encountered within boreholes 104 and 105 is considered to be intact rock with measured TCR values of 78 to 100 per cent, SCR values of 42 to 85 per cent and RQD values of 20 to 68 per cent.

January 2008

An intact sample of the gypsiferous mudstone had a compressive strength of 28 megapascals as shown on Figure C-4. The unit weight of the gypsiferous mudstone is 24.7 kilonewtons per cubic metre and the water content is 4.0 per cent.

Groundwater Conditions 4.4

During the previous investigation, piezometers were sealed in boreholes 1 and 2 to permit the monitoring of the groundwater levels in the overburden soils and in the bedrock at the abutments. The measured water levels ranged from elevation 185.2 to 186.9 metres with higher piezometric levels observed in the deeper bedrock installations. An upward vertical hydraulic gradient has been assumed. The results of the analytical testing carried out on the groundwater sample obtained from borehole 2 are detailed in Appendix A. The analytical testing indicated a pH value of 7.58 and a sulphate concentration of 1330 milligrams per litre.

The Grand River water level was noted to vary from elevation 185.6 to 185.7 metres between April 30 and May 2, 2007 during the drilling of boreholes 101 to 103. The encountered water depths are summarized in the following table. Long-term groundwater levels of 185 and 186 metres have been inferred in the overburden and bedrock, respectively. It should be noted that the groundwater level and the river levels are subject to seasonal fluctuations.

Borehole Number	Ground/ Sidewalk	Encountered Groundwater/ River		Measured Ele	l Water Level vations
and Installation	Surface Elevation (m)	Water Surface Elevation (m)	River Water Depth (m)	October 3, 2003 (m)	October 31, 2003 (m)
101	191.15	185.74	0.44	-	-
102	191.40	185.73	0.46	-	-
103	191.43	185.61	0.43	-	-
104	191.23	-	-	-	-
105	191.34	-	-	-	-
106	191.48	-	-	-	-
1 - shallow	189.69	-	-	185.88	185.24
1 - deep	189.69	-	-	186.34	186.22
2 - shallow	190.23	-	-	186.85	185.41
2 - deep	190.23	-	-	185.48	185.51

Structure Settlement 4.5

The post construction settlement estimated from the current survey data and the 1927 design drawings are provided in Table I together with the related rock parameters for the founding stratum. These data indicate average foundation settlements of up to 94 millimetres with differential settlements of as much as 80 millimetres at individual piers or abutments.

January 2008

Figure 4 provides a plot of the estimated settlements along the profile of the bridge and Figure 5 presents a frequency histogram of the transverse differential settlement of foundation units.

5.0 **MISCELLANEOUS**

The investigation was carried out using equipment supplied and operated by Lantech Drilling Services Inc., an Ontario Ministry of Environment licensed well contractor. The field operations were supervised by Mr. David Mitchell. The routine laboratory testing was carried out at Golder's London laboratory under the direction of Mr. Chris M. Sewell. The laboratory is an accredited participant in the MTO Soil and Aggregate Proficiency Program and is certified by the Canadian Council of Independent Laboratories for testing Types C and D aggregates.

The unconfined compressive strength testing was carried out in Golder's Mississauga laboratory under the direction of Dr. P. Dittrich, P.Eng. In addition to also being a participant in the MTO Soil and Aggregate Proficiency Program, the Mississauga laboratory is a MTO registered laboratory in the Specialty of Soil and Rock Including Testing for Foundation Engineering - Low and High Complexity.

This report was prepared by Ms. Dirka U. Prout, P. Eng. under the direction of the Project Manager, Mr. Philip R. Bedell, P. Eng. This report was reviewed by Mr. Fintan J. Heffernan, P. Eng., the Designated MTO Contact and Quality Control Auditor for this assignment.

GOLDER ASSOCIATES LTD.

Dirka U. Prout, P. Eng.

Philip R. Bedell, P. Eng. Principal

Fintan J. Heffernan, P. Eng. Designated MTO Contact

TP/DB/DUP/PRB/FJH/cr n/active/2007/1130 - geotechnical/1130-0000/07-1130-023-0 mh - argyle st bridge - caledonia/reports/07-1130-023-0 final detailed design rpt/jan 2 08 - (final) part a detail fdn inv argyle st south bridge.doc

January 2008

			SETTLE	MENT		ROCK PAR	AMETERS - FOU	NDING STRATUM
FOUNDATION UNIT	BOREHOLE	West Side	East Side	<u>Average</u>	Differential	TCR	<u>SCR</u>	RQD
		(mm)	(mm)	(mm)	(mm)	%	%	%
North Abutment	2	55	98	77	+43	21	9	0
Pier 1	101	131	117	124	-14	37	4	2
Pier 2	8	95	140	117	+45	49	34	0
Pier 3	102	85	85	85	0	53	5	0
Pier 4	106	104	94	99	-10	64	8	0
Pier 5	103	159	84	121	-75	68	16	10
Pier 6	105	140	60	100	-80	69	6	0
Pier 7	6	30	60	45	+30	47	20	8
Pier 8	104	49	74	62	+25	49	6	2
South Abutment	1	30	15	23	-15	44	17	3

NOTES:

07-1130-023-0 Page 1 of 1

TABLE I

SUMMARY OF ESTIMATED FOUNDATION SETTLEMENTS AND ROCK DATA

Rehabilitation of the Argyle Street South Bridge Former Highway 6, Caledonia, Site 9-2 GWP 3147-06-00

Prepared By: PRB Checked By: DUP

Golder Associates

^{1.} Differential settlements: + denotes tilt to the east; - denotes tilt to the west.

^{2.} Table to be read in conjunction with accompanying report

January 2008

07-1130-023-0 Page 1 of 2

COMPARISON OF FOUNDATION REHABILITATION MEASURES

TABLE II

Rehabilitation of the Argyle Street South Bridge

Former Highway 6, Caledonia, Site 9-2 GWP 3147-06-00

REMEDIATION	FEASIBILITY	ADVANTAGES	DISADVANTAGES	ESTIMATED COSTS	RISKS/
OPTION					CONSEQUENCES
Do nothing with settlement monitoring in conjunction with structural inspections	Suitable for short- term provided that the risk of additional foundation deformation is deemed acceptable	 Cheapest alternative Simple to implement Provides warning system for gradual failure Provides insight into settlement characteristics of foundation 	 Does not remediate the deteriorated bedrock on which the footings are constructed thus allowing foundation to deteriorate with time May not provide warning of sudden catastrophic failure Unsuitable as a medium to long term rehabilitation strategy unless measures are put in place to stabilize foundations Should monitoring reveal Scenario 3 to be the actual settlement behaviour, socially accepted probabilities of failure may be approached for the ten year period 	Costs are predictable Settlement survey costs about \$2,000 per event not including structural inspection or traffic protection	 Monitoring may not detect rapid deterioration leading to catastrophic failure of the structure even if alarm levels incorporated into monitoring system Depending on settlement characteristics, cracking leading to closure of bridge may occur
Pressure grouting of upper solutioned bedrock zone	Suitable for short, medium and long term	 Improves geotechnical resistance of bedrock in solutioned zone Original footings can be retained Suitable medium to long term strategy if bridge in service for over 10 years 	 Cofferdam construction and provision of a staging area is necessary Uncertainty involved in effectiveness of grouting as grout may not fill all voids/fractures Potential to impact groundwater supplies or Grand River ecosystem if grout escapes into sensitive pathways Chemical grouts are likely to be more effective but more expensive than cement grouts Pre, during and post remediation monitoring advisable 	Costs are very variable depending on the success of the initial trial(s) \$220,000 to \$250,000 per pier/abutment footing exclusive of cofferdam and staging area construction	Grout may not permeate all fractures/void resulting in untreated or poorly treated areas resulting in increased remediation costs or failure if such areas are not detected Grout may escape and impact surface and groundwater; clean up costs unquantifiable

Golder Associates

Table II Continued

REMEDIATION	FEASIBILITY	ADVANTAGES	DISADVANTAGES	ESTIMATED COSTS	RISKS/
OPTION					CONSEQUENCES
Micropiles socketed in competent bedrock	 Suitable for short, medium and long-term Preferred technical solution 	 Loads transferred to a competent stratum Suitable medium to long term strategy if bridge in service for over 10 years Depending on the method of installation selected at the pier locations, construction of pile caps, a cofferdam and staging area/platform within the water are not necessary 	 Costly and unpopular decision if structure is not retained beyond 10 years Installation of micropiles through existing piers from bridge deck possible but unlikely to be implemented due to the economic and social costs of bridge closure 	Costs are relatively predictable \$150,000 to \$180,000 per footing (depending on the type of installation); cost estimate does not include cofferdam construction, pile caps, provision of a staging area or handling and disposal of drill cuttings	 Previously undetected voids/cavities can be intercepted during construction which can increase costs This option should be carefully weighed against future plans for the structure to ensure compatibility

NOTES: 1. Costs are very preliminary estimates and are intended to provide a comparison between alternatives rather than actual construction costs. 2. Table to be read in conjunction with accompanying report.

COMPARISON OF FOUNDATION REHABILITATION MEASURES

07-1130-023-0 Page 2 of 2

Prepared By:	DUP
Checked By:	PRB

Golder Associates

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

I.	SAMPLE TYPE	III.	SOIL DESCRIPTION	I.	General
AS BS CS SS DS FS RC SC SC ST TO TP	Auger sample Block sample Chunk sample Split-spoon Denison type sample Foil sample Rock core Soil core Slotted tube Thin-walled, open Thin-walled, piston	De (Rel: La Ca Da Va	(a) Cohesionless Soilsnsity IndexNnsity IndexNBlows/300 mm or Blows/ft.ery loose0 to 4loose4 to 10opmpact10 to 30ense30 to 50ery denseover	π in x, log ₁₀ g t F V W II.	3.1416 natural logarithm of x x or log x, logarithm of x to base 10 acceleration due to gravity time factor of safety volume weight STRESS AND STRAIN
WS II.	Wash sample PENETRATION RESISTANCE	Consiste	(b) Cohesive Soils ncy	$\gamma \ \Delta \ \epsilon$	shear strain change in, e.g. in stress: $\Delta \sigma$ linear strain
Stand	lard Penetration Resistance (SPT), N: The number of blows by a 63.5 kg. (140 lb.) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split spoon sampler for a distance of 300 mm (12 in.)	Very soft Soft Firm Stiff Very stiff Hard	$\begin{array}{cccc} \mathbf{kPa} & \mathbf{psf} \\ 0 \text{ to } 12 & 0 \text{ to } 250 \\ 12 \text{ to } 25 & 250 \text{ to } 500 \\ 25 \text{ to } 50 & 500 \text{ to } 1,000 \\ 50 \text{ to } 100 & 1,000 \text{ to } 2,000 \\ 100 \text{ to } 200 & 2,000 \text{ to } 4,000 \\ \text{over } 200 & \text{over } 4,000 \end{array}$	$\begin{array}{c} \varepsilon_{v} \\ \eta \\ v \\ \sigma \\ \sigma' \\ \sigma'_{vo} \\ \sigma_{1}, \sigma_{2}, \sigma_{3} \\ \sigma_{oct} \end{array}$	volumetric strain coefficient of viscosity poisson's ratio total stress effective stress ($\sigma' = \sigma$ -u) initial effective overburden stress principal stress (major, intermediate, minor) mean stress or octahedral stress = ($\sigma_1+\sigma_2+\sigma_3$)/3
Dyna	mic Cone Penetration Resistance; N_d : The number of blows by a 63.5 kg (140 lb.) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).		SOIL TESTS water content plastic limit liquid limit consolidation (oedometer) test	τ u E G K	shear stress porewater pressure modulus of deformation shear modulus of deformation bulk modulus of compressibility
PH: PM: WH: WR:	Sampler advanced by hydraulic pressure Sampler advanced by manual pressure Sampler advanced by static weight of hammer Sampler advanced by weight of sampler and rod	CHEM CID CIU D _R	chemical analysis (refer to text) consolidated isotropically drained triaxial test ¹ consolidated isotropically undrained triaxial test with porewater pressure measurement ¹ relative density (specific gravity, G _s)	ΙΙΙ. ρ(γ)	SOIL PROPERTIES (a) Index Properties bulk density (bulk unit weight*)
Piezo	-Cone Penetration Test (CPT) A electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm^2 pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (Q _t), porewater pressure (PWP) and friction along a sleeve are recorded electronically at 25 mm penetration intervals.	M MH MPC SPC OC SO ₄ UC UU V V γ	sieve analysis for particle size combined sieve and hydrometer (H) analysis Modified Proctor compaction test Standard Proctor compaction test organic content test concentration of water-soluble sulphates unconfined compression test unconsolidated undrained triaxial test field vane (LV-laboratory vane test) unit weight	$ \begin{array}{c} \rho_{d}(\gamma_{d}) \\ \rho_{w}(\gamma_{w}) \\ \rho_{s}(\gamma_{s}) \\ \gamma' \\ D_{R} \end{array} \\ e \\ n \\ S \end{array} $	dry density (dry unit weight) density (unit weight) of water density (unit weight) of solid particles unit weight of submerged soil ($\gamma' = \gamma - \gamma_w$) relative density (specific gravity) of solid particles ($D_R = \rho_s / \rho_w$) (formerly G_s) void ratio porosity degree of saturation

Note: 1 Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU.

Unless otherwise stated, the symbols employed in the report are as follows:

LIST OF SYMBOLS

(a) Index Properties (continued)

W	water content
\mathbf{w}_1	liquid limit
Wp	plastic limit
l _p	plasticity index = $(w_1 - w_p)$
w _s	shrinkage limit
IL	liquidity index = $(w - w_p)/I_p$
I _C	consistency index = $(w_1 - w) / I_p$
e _{max}	void ratio in loosest state
e _{min}	void ratio in densest state
ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
	(formerly relative density)

(b) Hydraulic Properties

h	hydraulic	head	or potential
---	-----------	------	--------------

- rate of flow q
- velocity of flow v
- hydraulic gradient i
- hydraulic conductivity (coefficient of permeability) k
- seepage force per unit volume i

(c) Consolidation (one-dimensional)

C	compression index (normally consolidated range)
C_c C_r	recompression index (normally consolidated range)
Ċs	swelling index
Ca	coefficient of secondary consolidation
m _v	coefficient of volume change
c _v	coefficient of consolidation
T _v	time factor (vertical direction)
U	degree of consolidation
σ'_n	pre-consolidation pressure
OCR	over-consolidation ratio = σ'_{p}/σ'_{vo}

(d) Shear Strength

τ_p, τ_r	peak and residual shear strength
φ′	effective angle of internal friction
δ	angle of interface friction
μ	coefficient of friction = tan δ
c'	effective cohesion
c _u ,s _u	undrained shear strength ($\phi = 0$ analysis)
р	mean total stress $(\sigma_1 + \sigma_3)/2$
p′	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
q	$(\sigma_1 + \sigma_3)/2$ or $(\sigma'_1 + \sigma'_3)/2$
q_u	compressive strength ($\sigma_1 + \sigma_3$)
$\mathbf{S}_{\mathbf{t}}$	sensitivity

Notes: 1 $\tau = c' + \sigma' \tan \phi'$

2 shear strength = (compressive strength)/2
* density symbol is ρ. Unit weight symbol is γ where γ = ρg (i.e. mass density x acceleration due to constitut) to gravity)

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERING STATE

Fresh: no visible sign of weathering.

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable. Completely weathered: rock is wholly decomposed and in a friable condition but the rock texture and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane <u>Spacing-</u>
Very thickly bedded	>2 m
Thickly bedded	0.6 m to 2m
Medium bedded	0.2 m to 0.6m
Thinly bedded	60 m to 0.2 m
Very thinly- bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	< 6 mm

JOINT OR FOLIATION SPACING

Description	Spacing
Very wide	> 3 m
Wide	l – 3 m
Moderately close	0.3 – I m
Close	50 – 300 mm
Very close	< 50 mm

GRAIN SIZE

Term	Size*
Very Coarse Grained	> 60 mm
Coarse Grained	2 – 60 mm
Medium Grained	60 microns – 2 mm
Fine Grained	2 – 60 microns
Very Fine Grained	< 2 microns

Note: *Grains >60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, recovered at full diameter, measured relative to the length of the total core run. RQD varies front 0% for completely broken core to 100% for core in solid sticks.

DISCONTINUITY DATA

Fracture Index

A count of the number of discontinuities (physical separations) in the rock core, including both naturally occurring fractures and mechanically induced breaks caused by drilling.

Dip with Respect to (W.R.T.) Core Axis

The angle of the discontinuity relative to the axis (length) of the core, In a vertical borehole a discontinuity with a 90' angle is horizontal.

Description and Notes

An abbreviated description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes or mechanically induced features caused by drilling such as ground or shattered core and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces

Abbreviations

B – Bedding	P - Polished
FO - Foliation Schistosity	S - Slickensided
CL - Cleavage	SM - Smooth
SH - Shear Plane Zone	R - Ridged / Rough
VN - Vein	ST - Stepped
F - Fault	PL - Planar
CO - Contact	FL - Flexured
J - Joint	UE - Uneven
FR - Fracture	W - Wavy
M F - Mechanical Fracture	C - Curved
II - Parallel To	
占 - Perpendicular To	

PROJE	CT07-1130-023-0	_		R	ECO	RD C
G.W.P.	3147-06-00	_ LOC	ATIC	DN _	I	N 47704
DIST_	HWY _6	BOR	REHC	DLE TY	PE	ROTAR
DATUM	GEODETIC	_ DAT	E _			April 30,
	SOIL PROFILE		5	SAMPL	ES	н.
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS
191.15	SIDEWALK SURFACE					
<u>185.74</u> 5.41	Water Surface WATER					
185.30						
5.85 184.87	FILL, CODDIES and boulders					-
6.28	POSSIBLY CONCRETE (Very Poor Recovery)		1	CORE	NQ	
<u>183.96</u> 7.19	Moderately weathered, light grey, high porosity, moderately strong, DOLOMITIC SHALE, highly fractured.		2	CORE	NQ	_
182.66 8.49 181.61	Slightly weathered, thinly bedded, light grey, fine grained, moderately strong, DOLOMITIC SHALE, highly fractured.		3	CORE	NQ	
9.54	Moderately weathered, thinly bedded, light grey, fine grained, weak to moderately strong, DOLOMITIC SHALE, highly fractured.		4	CORE	NQ	
179.99 11.16	Slightly weathered, thinly bedded		5	CORE	NQ	-
178 47	greenish grey, weak DÓLOMITIC SHALE, highly fractured.		6	CORE	NQ	
12.68	Slightly weathered, brownish grey, weak to moderately strong gypsiferous DOLOSTONE, Gypsum occurs as beds, bands and nodules, highly fractured/ broken core.		7	CORE	NQ	-
14.20	Fresh, whitish brown mainly intact, cohesive, moderately strong,		8	CORE	NO	1

BO	RI	Eŀ	10	LE		N	o 10	1		1 (OF 2	ME	TRIC			
9 ;E 2	6796	66.2	2									 ORIG	INATED E	ЗY	DJM	
RILLIN	IG 8	& N1	N C	ASI	NG							 COM	PILED BY		WDF	
)7 - M	ay 1	, 20	07									 CHEC	KED BY			
ELEVATION SCALE	DY RE SH 0			CC NCE 4 STF NNF K TF 4		PE OT G IGT D XIAL 6	NETRA 0 8 TH kPa + 0 8	TION 0 10 FIELD LAB VA 0 10	DO VANE ANE DO	PLASTIU LIMIT W _P I	ER CC	LIQUID LIMIT W _L 	≷ ⇒ veight	O DI GF	REMAF & GRAIN STRIBU (%) & SA	RKS SIZE JTION SI CL
191																
190																
189																
188																
187																
186																
185		13		0		0										
101																
104		40		0		0										
183																
182		70		11		11										
181	(%)	26	(%)	0	(%)	0										
	T.C.R.		S.C.R.	10	R.Q.D.											
180		50		10		0										
179		33		8		0										
178																
		22		3		0										
177																
177		98		88		68										

+³, ×³: Numbers refer to O^{3%} STRAIN AT FAILURE Sensitivity

G.W.P.	
DIST HWY 6 BOREHOLE TYPE ROTARY DRILLING & NW CASING COMPILED BY DATUM GEODETIC DATE April 30, 2007 - May 1, 2007 CHECKED BY SOIL PROFILE SAMPLES Image: Sample Sam	WDF
DATUM GEODETIC DATE April 30, 2007-May 1, 2007 CHECKED BY SOIL PROFILE SAMPLES US Very Multicone Penetration PESISTANCE TARGET NRTURAL DESCRIPTION Partice Multiple Partice Multiple Description Multiple Partice Multiple Description Multiple Partice Multiple Partice Multiple Description Partice Multiple Partice Multiple Description Multiple Partice Multiple Partice Multiple Description Partice Multiple Partice Multiple Description Partice Multiple Partice Multiple Description Multiple Partice Multiple Description Partice Multiple Description <td< td=""><td></td></td<>	
SOIL PROFILE SAMPLES ELEV DESCRIPTION indicate and indicate andindicate and indicate and indicate and indicate and indicate andic	
ELEV DESCRIPTION 0 12 15 0 12 15 0 12 15 0 12 15 0 12 15 0 12 15 0 15 0 16 0 17	EMARKS
175.42 Sightly weathered to freah, whiteh brown to dark gray, fire grained, to DOLOMITIC SHALE 9 CORE NQ 176 9 8 68 1 <th1< th=""> <th1< th=""> <th1< th=""> 1</th1<></th1<></th1<>	RAIN SIZE TRIBUTION (%) SA SI CL
brown to dark grey, the grained, w DOLOMITIC SHALE 9 CORE NO 1775 2	
173.90 I 173.90 I 173.90 I 174 I I I I I I I I I I I I I I I I I I I	

Golder London, Ontario **RECORD OF** PROJECT 07-1130-023-0 G.W.P. 3147-06-00 LOCATION N 4770399.0 ;E 267951.7 DIST _____ HWY 6 DATUM GEODETIC DATE May 1, 2007 SOIL PROFILE SAMPLES 6 NUMBER ТҮРЕ Ē ELEV DEPTH DESCRIPTION STRAT I Water Surface 185.73 5.67 WATER 185.27 6.13 POSSIBLY ROCK FILL OR CONCRETE CONCRETE 6.43 183.96 7.44 Slightly weathered with some oxidation on surfaces, dark grey, fine grained, weak, DOLOMITIC SHALE, highly fractured Slightly weathered with some oxidation on surfaces, dark grey, fine grained, weak, DOLOMITIC SHALE, highly fractured CORE NQ 183.29 8.11

_ nigniy iractured	
Slightly weathered with some oxidation on surfaces, dark grey, fine grained, weak, DOLOMITIC SHALE, highly fractured	2 CORE NQ
Slightly to moderately weathered with some oxidation on surfaces, dark grey, fine grained, weak DOLOMITIC SHALE, highly fractured	
Slightly weathered, dark grey brown, weak to moderately strong, MUDSTONE with Gypsum laminae and nodules.	
Slightly weathered to fresh, greenish brown and white, weak to moderately strong, DOLOSTONE with Gypsum nodules (>40% gypsum).	5 CORE NQ
Fresh, grey-brown and white, fine grained, Gypsiferous DOLOSTONE (>70% gypsum)	

Continued Next Page

181.77 9.63

180.24 11.16

0 0 178.72 12.68

177.20

MTO

12.68

 $+^{3}, \times^{3}$: Numbers refer to Sensitivity $O^{3\%}$ STRAIN AT FAILURE

BOREHOLE N	lo 102
------------	--------

GROUND WATE CONDITIONS "N" VALUES

BOREHOLE TYPE ROTARY DRILLING & NW CASING

METRIC 1 OF 2

ORIGINATED BY _____

COMPILED BY WDF CHECKED BY

	DY	ΝΔΙ		00		-			T 1 (7)										
UN SCALE	RE	2		4		OT 6			0	10	00	PLASTI LIMIT W _P	C NATI MOIS CON	JRAL TURE TENT	LIQUID LIMIT W _L	UNIT VEIGHT	REM GRA	MARK & IN SIZ	S
EVAIIO	SH O	IEA UN		STF DNF K TF		IGT D XIAI	TH k	⟨Pa + ×	FIEL		VANE	и́ WAT	ER CC		[™] T (%)	γ	DISTR	RIBUT (%)	ION
Ē		2	0	4	0	6	0	8	0	10	00	1	0 2	0 3	0	kN/m ³	GR SA	A SI	CL
191																			
190																			
189																			
188																			
187																			
186																			
185																			
184		84		0		0													
183																			
182		37		10		0													
102				_															
181	T.C.R. (%)	40	S.C.R. (%)	-9-	R.Q.D. (%)														
180		75		48		47													
179																			
178		83		68		52													
177		100		85		60													

G.W.P.	
DIST HWY 6 BOREHOLE TYPE ROTARY DRILING & INV CASING COMPILED BY DATUM GEODETIC DATE May 1, 2007 CHECKED BY SOIL PROFILE SAMPLES IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Y <u>DJM</u>
DATUM GEODETC DATE May 1, 207 CHECKED BY SOIL PROFILE SAMPLES B <td< td=""><td>WDF</td></td<>	WDF
SOIL PROFILE SAMPLES H m of the second seco	
ELEV DESCRIPTION 1/2 <t< td=""><td>DEMADKS</td></t<>	DEMADKS
175.67 END OF BOREHOLE NO 176 <td>& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL</td>	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
175.67 171 172 <t< td=""><td></td></t<>	

2011	aon, ontano						
PROJ	ECT 07-1130-023-0	_		RE	ECO	rd o	FE
G.W.I	P. 3147-06-00	LOC	ATIC	N	1	N 477035	57.1 ;
DIST	HWY 6	BOR	FHC) F TY	PF F	ROTARY	DRI
			F		· ·	/av 2 20	07
Drifte		- 5/11				nay 2, 20	, <u>,,,</u>
	SOIL PROFILE		5	SAMPL	ES	S ER	L A
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	BROUND WAT CONDITION	
191.43	SIDEWALK SURFACE	4.00				0	Ц
0.15							1
							1
							1
							1
							1
185.61	Water Surface	_					
5.82 185 18	WATER						
6.25	CONCRETE		1	CORE	NQ		1
<u>183.93</u> 7.50	Slightly to moderately weathered, grey, fine grained, some vugs, weak, DOI OWITIC SHAL E biobly		2	CORE	NQ		1
<u>183.33</u> 8.10	Slightly to moderately weathered, grey, fine grained, weak, DOLOMITIC SHALE, highly fractured.		3	CORE	NQ		1
181 80		副					1
9.63	Slightly to moderately weathered, grey, fine grained, weak, DOLOMITIC SHALE to Gypsiferous MUDSTONE (>50% gypsum), highly fractured to rubbly, sharp contact with cohesive gypsiferous mudstone.		4	CORE	NQ		1
11.16	Slightly weathered to fresh, dark greyish brown with transition to greenish grey, fine grained, weak, DOLOMITIC SHALE. Gypsum occurs as laminae and nodules.		5	CORE	NQ		1
178.75	Fresh, greyish brown and white, weak to moderately strong, Gypsiferous DOLCSTONE (~60% gypsum). Gypsum occurs as laminae and nodules.		6	CORE	NQ		1
1/7.23 14.20	Fresh to slightly weathered, some vugs, grey-brown and white, weak to moderately strong, Gypsiferous DOLOSTONE (>60% gypsum).		7	CORE	NQ		1

Continued Next Page

GDT

30.GPJ LDN_MTO.

No

+ ³, \times ³: Numbers refer to Sensitivity O ^{3%} STRAIN AT FAILURE

OF BOREHOLE	No 103	

METRIC 1 OF 2

57.1 ;E 267937.3

/ DRILLING & Nw CASING

ORIGINATED BY _____

CHECKED BY

N SCALE	DY RE	NAI SIS 2		CC NCE	DNE PL 0	PE OT 6		A - 80	TION	00	PLASTI LIMIT	C NATU MOIS CONT	JRAL TURE TENT	LIQUID LIMIT	JNIT EIGHT	RE	EM/ 8		S
ATION	SH	IEA	RS	STF		IGT	HkF	a			w _∟		DIST	RIE	BUTI	ON			
TEV	•	QL	JICI	K TI	RIA	XIAL	_ ×	L	AB VA	ANE	WAT	ER CO	NTEN	Г (%)	Ŷ		(%	6)	
ш ——		2	0	4	0	6	0	80) 10	00	1	0 2	0 3	0	kN/m ³	GR \$	SA	SI	CL
191																			
190																			
189																			
100																			
188					_														
187																			
186																			
						_													
185		92		0		0													
101		88		0		0													
104																			
183																			
		65		32		20													
182																			
181	(%)	45	(%)	20	(%)	13													
	.C.R.		.C.R.		0.D.														
	Т		0)		œ														
180																			
		100		70		60													
470																			
179																			
178		100		78		72													
						$ \parallel$													
177		100		62		55		╡											

+ ³, × ³: Numbers refer to O ^{3%} STRAIN AT FAILURE

PROJECT	RECORD OF BOREHOLE No 103	2 OF 2 METRIC
G.W.P	LOCATION N 4770357.1 ;E 267937.3	ORIGINATED BY
DIST HWY _6	BOREHOLE TYPE ROTARY DRILLING & Nw CASING	COMPILED BY WDF
DATUM GEODETIC	DATE May 2, 2007	CHECKED BY
SOIL PROFILE		
ELEV DESCRIPTION	SILVAT PLANE SILVAT PLANE SI	PLASITIC MOISTURE LIQUID LIMIT CONTENT LIMIT w _p w w _L S GRAIN SIZE USTRIBUTION WATER CONTENT (%) Υ (%)
Gypsum occurs as nodules.	Image: Construction	GR SA SI CL
175.70 15.73 END OF BOREHOLE		

	PROJE	ECT 07-1130-023-0			R	ECO	rd o	F١
	G.W.P	. 3147-06-00		ATIC	DN _	1	N 477029	2.3
	DIST	HWY _6	BOR	EHC	LE TY	PE	ROTARY	DR
	DATU	M GEODETIC	DAT	E _		١	May 7, 20	007
		SOIL PROFILE		5	SAMPL	ES	ĸ	l
	ELEV DEPTH	DESCRIPTION	TRAT PLOT	NUMBER	ТҮРЕ	N" VALUES	ROUND WATE CONDITIONS	
	191.23	SIDEWALK SURFACE	S			-	0	i
	0.20							
	185.97 5.26	River Bed DOLOSTONE BOULDER and						
	185.38	washout	副	1	CORE	NQ		
	5.85 184.71	Grey, moderately strong DOLOSTONE BOULDER		2	CORE	NQ		
	6.52	Moderately weathered, light grey, weak, DOLOMITIC SHALE, washout and broken core.		3	CORE	NQ		
	7.32	Moderately weathered, light grey, weak, DOLOMITIC SHALE, broken core.		4	CORE	NQ		
	181.66	Moderately to highly weathered, broken and rubbly core, light grey, weak, DOLOMITIC SHALE, core is very broken.		5	CORE	NQ	-	
	9.57	Moderately to slightly weathered, dark grey to green, fine grained, weak, DOLOMITIC SHALE with a 100mm Gypsum nodules, core is highly fractured.		6	CORE	NQ		
O.GDT 1/3/08	11.09	Slightly weathered to fresh, fine grained, blue-grey, weak, SHALE to Gypsiferous MUDSTONE (<25% gypsum). Gypsum occurs as laminae and nodules.		7	CORE	NQ		
1300230.GPJ LDN_MT	12.62	Slightly weathered to fresh, grey-brown and white, weak to moderately strong, Gypsiferous MUDSTONE (>50% gypsum), occasional vuggy spots. Gypsum occurs as nodules.		8	CORE	NQ		
ON_MTO 071	14.14	Slightly weathered, grey-brown and white, weak, Gypsiferous MUDSTONE (-80% gypsum), highly fractured. Gypsum occurs as nodules.		9	CORE	NQ		

Continued Next Page

+ ³, \times ³: Numbers refer to Sensitivity O ^{3%} STRAIN AT FAILURE

)	F BO	R	Eŀ	ю	LE		No	o 10)4		1 (OF 2		ME	TRIC	
9	2.3 ;E 2	679	15.0)										ORIG	INATED I	BY <u>DJM</u>
Y	DRILLIN	NG (& N1	w C.	ASI	NG								COM	PILED BY	WDF
20	07													CHEC	KED BY	
	ELEVATION SCALE	DY RE SH 0			4 STF ONF K TH		PEI OT G IGT D XIAL		ATION 30 a FIELI LAB V 30	100 	PLASTI LIMIT W _P 	C NATI MOIS CON TER CC	JRAL TURE TENT W DNTEN	LIQUID LIMIT W _L T (%)	ν ν κ V/m³	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	191															
	190															
	189															
	188															
	187															
	186		0		0		0									
	185		81		0		0									
	184		37		0		0									
	183		48		0		0									
			52		3		0									
	182	(%		(%)		(%)										
	181	T.C.R. (°	50	S.C.R. (*	17	R.O.D. (7									
	180		100		77		58									
	179										0				23.1	UC
	178		85		85		68									
	177										0				24.7	UC
			78		42		20									

+³, X³: Numbers refer to O^{3%} STRAIN AT FAILURE Sensitivity

PROJ	ECT 07-1130-023-0			R	ECO	RD O	F BC	REF	IOLI	EN	o 10	4	2	OF 2	2	ME	TRIC	
G.W.F	93147-06-00		ATIC	ON _	1	N 477029	92.3 ;E 2	67915.0)							ORIG	INATED	BY <u>DJM</u>
DIST	HWY _6	BOR	REHC	DLE TY	PE	ROTARY	DRILLI	NG & N	w CAS	NG						COM	PILED BY	WDF
DATU	M GEODETIC	DAT	Έ_		1	May 7, 20	007									CHEC	CKED BY	
	SOIL PROFILE		5	Sampl	ES	TER	CALE	DYNA RESIS	MIC CO STANCI	DNE PE E PLOT		TION	PLAST		URAL STURE	LIQUID	т Н	REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WA	ELEVATION SC	2 SHEA 0 UI • Q 2	20 4 AR STH NCONF UICK T 20 4	RENGT	i0 8 	0 100 FIELD VAI LAB VANE 0 100		CON TER CC 10 2	DNTEN	UMII WL T (%)	NIN γ kN/m ³	GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
175.56	Fresh, laminated, brown and white interbeds of dolostone and gypsum, some vugs near basal, moderately strong Gypsiferous DOLOSTONE (>50% gypsum). Gypsum occurs as laminae and nodules.		9	CORE	NQ	-	176 175	78 78 (%) 100	42 (%) '2'." '5' 92	20 (%) 								
174.04 17.19	END OF BOREHOLE																	

Golder London, Ontario **RECORD OF** PROJECT 07-1130-023-0 G.W.P. <u>3147-06-00</u> _ LOCATION ____ N 4770330.3 DIST_____ HWY _6___ BOREHOLE TYPE ROTARY D DATUM GEODETIC DATE SOIL PROFILE SAMPLES 6 STRAT PLO NUMBER TYPE ELEV DEPTH DESCRIPTION 191.34 SIDEWALK SURFACE 0.00 CONCRETE 0.14 River Bed 185.43 5.91 6.07 183.84 7.50

FILL, Sandy silt, Brown	XXX				
CONCRETE		1	CORE	NQ	
Slightly to moderately weathered, grey, fine grained, weak, DOLOMITIC SHALE, highly		2	CORE	NQ	
Slightly to moderately weathered, light grey, top 300mm of run is vuggy, some clay infill of fractures near basal, weak, DOLOMITIC SHALE, highly fractured.		3	CORE	NQ	
Slightly to moderately weathered, dark grey, weak, DOLOMITIC SHALE, highly fractured and broken core.		4	CORE	NQ	
Slightly weathered to fresh, grey with white gypsum nodules, weak to moderately strong, Gypsiferous MUDSTONE (>50% gypsum). Gypsum occurs as nodules.		5	CORE	NQ	
Slightly weathered to fresh, greyish brown, vuggy porosity, moderately strong, Gypsiferous DOLOMITE (~50% gypsum). Gypsum occurs as nodules.		6	CORE	NQ	
Fresh, grey-brown with white gypsum nodules, moderately strong, Gypsiferous DOLOMITE (>70% gypsum) to GYPSUM (bottom		7	CORE	NQ	

Continued Next Page

183.20 8.14

181.68 9.66

180.15 11.19

178.63 178.63 12.71

014.23

No

GROUND WATE CONDITIONS "N" VALUES

+ ³, \times ³: Numbers refer to Sensitivity O ^{3%} STRAIN AT FAILURE

COI	rd o	F BO	R	Eŀ	10	LE		No	o 10	5		1	OF 2		ME	TRIC		
Ν	N 4770330.8 ;E 267939.1 ROTARY DRILLING & Nw CASING May 8, 2007														ORIG	INATED I	BY <u>DJM</u>	
E _ F	ROTARY	DRILLIN	IG i	& N1	w C.	ASI	NG								COMF	PILED BY	WDF	
Ν	<i>I</i> lay 8, 20	07													CHEC	KED BY		_
"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	DY RE SH 0			4 STF DNF K TH		PEI OT IGT IGT	NETRA	TION 0 FIELI	100 D VANE VANE	PLASTI LIMIT W _P I			LIQUID LIMIT WL T (%)	λ UNIT WEIGHT	REMARKS & GRAIN SIZE DISTRIBUTIC (%)	E)N
		_		2		4	-	-	0 0	0	100					kN/m°	GR SA SI	
		191 190																
		189																
		188																
		187																
		186		100		0		0										
NQ		184		87		0		0										
		183	-															
NQ		182		82		8		0										
NQ		181	T.C.R. (%)	28	S.C.R. (%)	5	R.Q.D. (%)	0										
NQ		180 179		87		72		65										
NO		178		95		85		67										
1902		177						01										
NQ				100		87		67										

+ ³, X ³: Numbers refer to O ^{3%} STRAIN AT FAILURE Sensitivity

PROJECT 07-1130-023-0	RECORD O	F BOREHOLE No 105	2 OF 2 M	ETRIC
G.W.P. 3147-06-00	LOCATION N 477033	D.8 ;E 267939.1	OR	GINATED BY
DIST HWY _6	BOREHOLE TYPE ROTARY	DRILLING & Nw CASING	CO	
DATUM GEODETIC	DATE May 8, 20	07	CHI	ECKED BY
SOIL PROFILE	SAMPLES 🗠		ΝΑΤΙΙΡΑΙ	DEMARKS
ELEV DEPTH DESCRIPTION	STRAT PLOT NUMBER TYPE "N" VALUES GROUND WATE CONDITIONS	20 40 60 80 100 SHEAR STRENGTH kPa 0 UNCONFINED + FIELD VANE VI QUICK TRIAXIAL X LAB VANE 20 40 60 80 100	PLASTIC INFORCE LIQU LIMIT CONTENT LIM W _P W W _L I	DI T N DI V DI V DI V C N DI V
400mm of core). Gypsum occurs as laminae and nodules.	THE 7 CORE NQ	176 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)		-
175.58 15.76 END OF BOREHOLE				

							_
PROJE	CT 07-1130-023-0	_		R	ECO	RD O	F
G.W.P.	3147-06-00		ATIC	DN	1	N 477037	73.0
DIST_	HWY _6	BOF	REHO	DLE TY	PE _F	ROTARY	' DF
DATUN	1 GEODETIC	DAT	Е			June 21,	200
					-0		
	SOIL PROFILE			SAMPL	ES	IS TER	
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	SROUND WA	
191.48	SIDEWALK SURFACE						
0.15	Fire Ped						
185.38 6.10	CONCRETE	-					
<u>184.04</u> 7.44	Slightly to moderately weathered, grey, fine grained, highly fractured, weak DOL OMITIC SHALE		2	CORE	NQ		
183.37 8.11	Slightly to moderately weathered, grey, fine grained, highly fractured, weak, DOLOMITIC SHALE		3	CORE	NQ		
9.63 180.54 10.94	Slightly to moderately weathered, grey/green, fine grained, highly fractured, weak, DOLOMITIC SHALE Green SHALE		4	CORE	NQ		
11.28	Slightly weathered, light brown with white gypsum nodules, laminated, cohesive, weak to moderately strong, Gypsiferous DOLOSTONE (~50% gypsum)		5	CORE	NQ		
178.80	Slightly weathered, light brown with white gypsum nodules, cohesive, weak to moderately strong, Gypsiferous DOLOSTONE (~50% gypsum)		6	CORE	NQ		
14.20	Fresh to slightly weathered, light brown with white gypsum nodules, cohesive, weak to moderately strong, Gypsiferous DOLOSTONE		7	CORE	NQ		

Continued Next Page

+ ³, \times ³: Numbers refer to O ^{3%} STRAIN AT FAILURE Sensitivity

)	F BO	R	E۲	ю	LE		No	o 10	6		1 (OF 2	ME	TRIC	
7	'3.0 ;E 20	679	53.7	7									ORIG	INATED I	BY <u>DJM</u>
Y	DRILLIN	NG a	& N	w C.	ASI	NG							COM	PILED BY	WDF
. :	2007												 CHEC	KED BY	
	ELEVATION SCALE	DY RE SH 0			CC NCE 4 STF NF K TI 4		PEI OT IGT IGT KIAL	NETRA	TION 0 10 FIELD LAB VA	VANE	PLASTIULIMIT WP WAT	ER CC		KZ/w WEIGHT	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	191														
	190														
	189														
	188														
	187														
	186														
	185		100		67		50								
	184		92		80		72								
	183														
	182		27		10		0								
	181	R. (%)	60	R. (%)	17	0%)	0								
	180	T.C.F		S.C.F		R.Q.I									
	100		97		88		83							22.2	UC
	179													23.3	
ļ	178		97		80		50								
	177		83		60		52								

+³, ×³. Numbers refer to O^{3%} STRAIN AT FAILURE Sensitivity

G.W.P. <u>3147-06-00</u> DIST HWY <u>6</u> DATUM <u>GEODETIC</u> SOIL PROFILE	LOC. BOR DAT		DLE TY	PE _F	N 477037 ROTARY June 21,	<u>3.0 ;E 2</u> DRILLII	67953 NG & N	.7 Nw CASI	NG					0	ORIGI		BY DJM
DIST HWY _6 DATUM _GEODETIC SOIL PROFILE		EHC	DLE TY	PE	ROTARY lune 21,	DRILLI	NG & N	W CASI	NG					(COMP		
DATUM <u>GEODETIC</u> SOIL PROFILE	AT PLOT	E_	SAMPL		lune 21,	2007								`	00111		
SOIL PROFILE	AT PLOT	9	SAMPL			2007								(CHEC	KED BY	
FLEV	AT PL	~		ES S	VATER ONS	SCALE	DYN/ RESI	AMIC CO STANCE 20 4	DNE PE E PLOT		TION 0 100	PLASTI LIMIT	C NATU MOIST CONT	IRAL IURE L IENT	iquid Limit	JNIT EIGHT	REMARKS &
DEPTH DESCRIPTION	STR	NUMBER	ТҮРЕ	"N" VALUE	GROUND V CONDITI	ELEVATION	SHE. ou • c	AR STE INCONE QUICK T 20 4	RENGT INED RIAXIAI	H kPa + ↓ × 0 8	FIELD VANE LAB VANE 0 100	WAT	0 ER CO	NTENT (0 30	w∟ ⊣ (%)	⊃ ≝ γ kN/m³	GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
(~50% gypsum)		7	CORE	NQ		176	83	3 60	52							22.6	
15.73 Slightly weathered, light brown with white gypsum nodules, cohesive, weak to moderately strong, Gypsiferous DOLOSTONE (~50% gypsum)		8	CORE	NQ		175	T.C.R. (%)	06 S.C.R. (%)	R.O.D. (%)								
17.25 END OF BOREHOLE																	

_							
_							
_							
_	D:	90	120 Sottlomor	1 1	50	180	
9	ווט	ilerentiai	Settlemen	it (mm)			
		project FOR	ARGYLE S MER HIGHW	TREET S /AY 6, C //P 3147	SOUTH B ALEDON	RIDGE IA, SITE 9-2	
D		™≞ TRANS'	VERSE DI	FERE	NTIAL	SETTLEMEI	νт
			iolder sociates	PROJECT No. CADD With CHECK	07-1130-023-0 DF DEC. 18/07	FILE No. 0711300230-R010 SCALE N.T.S. RE FIGURE	^{05.DWG} ▼. 0 5

RESULTS OF PREVIOUS INVESTIGATION GEOCRES NO. 30M4-101 (GOLDER ASSOCIATES LTD. REPORT NO. 021-3233)

APPENDIX A

PROJE	CT 07-1130-023-0			F	RECO	ORD	OF
G.W.P			ATIC	DN _	1	477026	63.3 ;E
DIST	HWY 6	BOR	EHC	DLE TY	PE_F	POWER	AUGE
DATUN		_ DAT	E _		(October 1	1, 200
	SOIL PROFILE			SAMPI	FS	~	ш
		F				ATEF	SCAL
ELEV DEPTH	DESCRIPTION	STRAT PLO	NUMBER	ТҮРЕ	"N" VALUE	GROUND W CONDITIC	ELEVATION (
189.69 0.00	GROUND SURFACE (FILL), silty sand and gravel, with						_
189.23	asphalt and topsoil	_					
0.46	(FILL), sandy silt some gravel, trace		1	88	20		18
	Compact Brown		'	00	20		
			-			NK	1
			2	SS	25	NHN	18
						NNN	
			3	SS	20		
186.95 2.74	(FILL), sandy silt, trace gravel, roots					KIR	18
	and brick Compact		4	SS	16	NHK	
186.18	Brown						
3.51	gravel		5	SS	23	NHM	18
105.07	Brown						
4.42	SILT, some sand, some rock		6		70/	4	
	fragments, Dense to very dense		0	55	150mm		18
	Grey and brown					们	
			7	SS	37		
183 65			8	ss			18
6.04	Light grey to dark grey DOLOMITIC SHALE moderate to low recovery as		9	CORE	30/ 0mm		
	cylindrical core and angular, broken fragments. Surfaces are slightly						10
	weathered with brown stains.						
			10	CORE	NQ		
							18
		副	11	CORE	NQ		
181.09 8.60	Grey, fresh, medium strona						18
8.84 180.52	non-dolomitic/calcareous SHALE	一間	12	CORE	NO		
9.17	GYPSUM, with shaley laminae	一間	12				
	non-dolomitic/calcareous SHALE	間					18
		間					
470.00		瞫	13	CORE	NQ		
179.08	Light brown, fresh, medium strong,	一世				r	17
	laminated gypsiferous DOLOSTONE. Gypsum occurs as	三世		<u> </u>			
	nodules and laminae.	三世					
		氲	14	CORE	NQ		17
		圜					
		氲					
		氲		00000			17
		퉤	15	CORE	NQ		
176.28	White. fresh. medium strong						
	GYPSUM with dolomitic shale	틾	16	CORE	NQ		17
	laminae.						
175.52	laminae.						
175.52 14.17	Light brown, fresh, medium strong		17	CORE	NQ		

APPENDIX A1

RECORDS OF PREVIOUS BOREHOLES

NUMBER SOLID STEM & NU CASING COMPILED BY UMDE 12003 - October 2, 2003 CHECKED BY DJM 1203 - October 2, 2003 SHEAR STRENOTH KPa LUCK TRIAXIAL × LAB VANE 0 UICK TRIAXIAL × LAB VANE VATER CONTENT UICK TRIAXIAL × LAB VANE 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 0 1204 0 0 0 1204 0	OF B	OF	RE	H	ЭL	E	١	No 1			1 (OF 2	ME	TRIC		
AUGER: SOLID STEM & INU CASING COMPILED BY	63.3 ;E 20	679	21.1	I									ORIG	INATED I	BY DJM	
Diama CHECKED BY DM Image: Diama Image: Diama <td< td=""><td>AUGER,</td><td>, SO</td><td>LID</td><td>ST</td><td>EM</td><td>& N</td><td>lw C</td><td>CASING</td><td>6</td><td></td><td></td><td></td><td>COM</td><td>PILED BY</td><td>WDF</td><td></td></td<>	AUGER,	, SO	LID	ST	EM	& N	lw C	CASING	6				COM	PILED BY	WDF	
UNUMAL COMPANIC CONCEPTOR PLASTIC MURAL MUST INCEPTOR LOUD MUST INCE FEMAR FEMAR<	1, 2003 -	Oct	obe	er 2,	200)3							 CHEC	KED BY	DJM	
	ELEVATION SCALE	DY RE S⊢ 0			CC NCE 4 STF ONF K TF 4		PE OT 6 IGT D XIAI 6		TION 0 10 FIELD LAB V/	VANE	PLASTIULIMIT WP WAT	ER CC	LIQUID LIMIT W _L T (%)	₩, KEIGHT	REMARKS & GRAIN SIZ DISTRIBUTIO (%) GR SA SI	S E ON CL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	189										0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	188											>				
186	187	_									c					
185	186											0			15 42 34	9
184 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	185											o				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	184											0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	183		67		40		0									
$181 \frac{58}{59} 0 0 0$ $180 \frac{35}{22} \frac{93}{23} \frac{3}{25} \frac{53}{53} \frac{3}{52} \frac{45}{245}$ $179 \frac{3}{12} \frac{3}{12} \frac{53}{12} \frac{3}{12} \frac{45}{12}$ $178 \frac{100}{12} \frac{63}{12} \frac{53}{12} \frac{53}{12} \frac{3}{12} \frac{45}{12}$	182		23		10		0									
$180 \frac{59}{45} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	181		58		35		13									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			59		0		0									
179 179 179 178 100 63 53 178 100 63 53 178 100 63 53 178 100 63 53 178 100 63 53 178 100 63 53 179 53 179 53 179 53 53 53 53 53 53 53 53 53 53 53 53 53	180	(%)	93	(%)	53	(%)	45									
178 100 63 53	179	T.C.R.		S.C.R.		R.Q.D.										
	178		100		63		53									
	177		77		42		32									
	176		72		-38		34									
175 95 90 72	175		95		90		72									

PROJ	ECT			R	ECO	ORD	OF B	ORE	EHOL	E	No 1		2	OF 2		ME	TRIC	
G.W.F	D. <u>3147-06-00</u>	LOC	ATIC	DN	1	477026	3.3 ;E 2	67921	.1							ORIG	INATED	BY <u>DJM</u>
DIST	HWY _6	BOR	REHC	DLE TYI	PE	POWER	AUGER	SOLI	D STEM	& Nw (CASING					COM	PILED BY	WDF
DATU		DAT	E		(October 1	, 2003 -	Octob	er 2, 200	03						CHEC	KED BY	DJM
	SOIL PROFILE		S	SAMPL	ES	ER	ALE	DYN/ RESI	AMIC CO STANCE	DNE PE PLOT		ION	PLASTI		JRAL	LIQUID	, F	REMARKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WAT CONDITION	ELEVATION SC	SHE. OU • C	20 4 AR STF INCONF QUICK TI 20 4	0 6 RENGT INED RIAXIA 0 6	0 80 FH kPa + F L X L	100 IELD VANE AB VANE 100	LIMIT W _P I WAT	ER CC		LIMIT W _L 	NUI Y KN/m ³	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
<u>174.11</u> 15.58	Grey SHALE grading to light brown		17	CORE	NQ		174	95	5 90 	, 72 3								
15.94	grey DOLOMITIC SHALE. Fresh, medium strong. Vuggy GYPSUM, weak, slightly weathered. Grev, medium strong, thinly		18	CORE	NQ		170	10 T.C.R. (%	06 S.C.R. (%)	8. Q.D. 8. Q.D. 8. C.D.								
172.59	laminated DOLOMITIC SHALE with gypsum laminae and nodules		19	CORE	NQ		173	75	5 50	33								
172.59 17.10	gypsum taminae and nodues END OF BOREHOLE Water level in Deep installation at elev. 186.34m OCT. 3, 2003. Water level in Shallow installation at elev. 186.622m OCT. 31, 2003. Blockage in Shallow installation at elev. 185.24m OCT. 31, 2003. Abandoned Oct. 31, 2003.				NQ													

PROJE	ECT 07-1130-023-0			F	REC	OR	D	OF B	OR	EH	IOL	E	Ν	lo :	2		1	OF	2	ME	TRIC	
G.W.P.	. 3147-06-00	LOC	ATIC	ON _		N 47	7046	7.2 ;E 2	26797	1.4											SINATED	BY <u>DJM</u>
DIST_	HWY _6	BOF	REHC	DLE TY	PE	POW	/ER /	AUGER	, HOL	LOV	V ST	EM	& Nv	v CAS	SING					CON	IPILED BY	WDF
DATUN		DAT	Е_			Octo	ber 2	2, 2003	- Octo	ber 3	3, 20	03								_ CHE	CKED BY	DJM
	SOIL PROFILE			SAMPL	ES	Ľ		Щ	DYN RES			DNE E PL			ATION		Т	NA				DEMARKS
		ы	~		S	VATE	ONS	SCA		20	2	ļ0	60	0	80	100	PLAST LIMIT	TIC MO CO	ISTURE	LIQUIE		&
ELEV	DESCRIPTION	TPL	MBEF	ΥΡΕ	ALUE		NDITI	VTION	SHE	EAR	STE	REN		HkP	a		₩ _P		w -o	W_		DISTRIBUTION
DEPTH		STRA	N	-		GROI	СО	ELEVA	•	QUIC		RIA	XIAL	. ×		/ANE	WA	TER C	ONTE	NT (%)	γ	(%)
190.23	PAVEMENT SURFACE					Pa	P P 0	400		20	2			0	80	100	+	10	20	30	kN/m ³	GR SA SI CL
0.15	(FILL), sand, fine to medium (FILL), sandy silt, trace clay, some						1	190														
	gravel, trace bricks Compact Brown		1	SS	21	N												a				
188.86								189	-				_				+	-			-	
1.37	(FILL), clayey slit, trace sand, some gravel, cinder layers Stiff to hard		2	SS	36														0			
	Brown and black							188									0					
			3	SS	12														5			
187.33 2.90	(FILL), sandy silt, trace clay, some						1															
	gravel, cinders and topsoil Compact Brown		4	SS	15			187	1										,			
	DIOWIT																					
186.12 4.11	SAND AND GRAVEL, trace silt	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						186		_			_				_					
	Brown	000	_		07	┨┛																
		000	5	- 55	37			105														
184.59		0000						185														
5.64	NO RECOVERY Probably Dolostone, light brown								\vdash	-			\square									
102.00		Ē	6	CORE	NQ	\mathbb{N}		184		0	0		0				+				-	
6.55	Light brown, stained, very vuggy DOLOSTONE, Recovered as broken	臣	7	SS	100/ 75mm	\mathbf{k}																
	core and angular fragments.					\mathbb{N}		183													_	
182.61	Once modium strong massive to		8	CORE	NQ				ŧ	51	30		0									
7.02	thinly laminated DOLOMITIC SHALE. Weathered surfaces, low																					
	recovery.	퉫		- 33	20/ 50mm		**	182					Π				1				-	
		瞫	10	CORE	NQ	\mathbb{N}			2	24	12		0									
								181			-						_				-	
180.60 9.63	Highly weathered grey,								-	_	_		\vdash									
	medium strong, massive to thinly laminated DOLOMITIC SHALE.	瞫						100	(%	(%		(%										
	weathered surfaces, low recovery.	間	11	CORE	NQ			180	0.R.	17 m	0	0.D.	0									
										0.	`	ľ										
						K		179	╞	_	-	-	H				-					
80 178 31			12	CORE	NQ	K	\geq			0	0		0									
÷ 11.92	Completely weathered grey DOLOMITIC SHALE with gypsum	Ē	13	SS	12	$\left[\right]$	\backslash	178														
ATO.G	nodules recovered from split spoon samples.	Ē	14	SS	7	K	\geq					1										
z 177.34 12.89	Interbedded white, strong, fresh,					₽	$\overline{)}$		╞				\vdash									
GPJ	coliform GYPSUM and strong, fresh, light brown, laminated SHALEY DOLOSTONE with podular gypsum	瞫	15	CORE	NQ	R	\backslash	177	1	00	95		72								-	
30023(marrissalar gypourn.		1.	00000		\uparrow	\sum					}	$\left \right $									
02112			16	CORE	NQ	\downarrow	\backslash	176	$ ^1$	JU	100	1	11			_				_	-	
0 1/5./5 5 14.48	Grey, fresh, medium strong	閳	17	CORE	NQ		\backslash		8	37	95		48									
z						\square	\searrow															

Continued Next Page

PROJ	ECT _ 07-1130-023-0	_		F	RECO	ORD	OF B	ORE	HOL	E N	lo 2		2	OF 2		ME	TRIC	
G.W.F	P. <u>3147-06-00</u>		ATIC	DN _	1	477046	67.2 ;E 2	67971.4	Ļ							ORIG	INATED	BY <u>DJM</u>
DIST	HWY _6	BOR	REHC	DLE TY	PE	POWER	AUGER	HOLLO	OW STI	EM & N	w CASIN	IG				COM	PILED BY	WDF
DATU	M GEODETIC	_ DAT	E _		(October 2	2, 2003 -	Octobe	er 3, 200	03						CHEC	CKED BY	DJM
ELEV DEPTH	SOIL PROFILE	SAT PLOT	UMBER	SAMPL BAMPL	AALUES S	OUND WATER ONDITIONS	ATION SCALE	DYNA RESIS 2 SHEA 0 UM	MIC CO TANCE 0 4 IR STF		NETRAT 0 80 TH kPa + F	TON 100 TELD VANE	PLASTI LIMIT W _P		URAL TURE TENT W		κ UNIT WEIGHT	REMARKS & GRAIN SIZE DISTRIBUTION (%)
175.08		STF	z		z	GRO	ELEV	• QI 2	JICK T		_ × L 0 80	AB VANE 100	1	ER CC 0 2	20 3	1 (%) 80	• kN/m ³	GR SA SI CL
15.15	White, slightly weathered, strong GYPSUM Light brown-grey, laminated, vuggy, slightly weathered, strong DOLOSTONE with gypsum nodules.		17	CORE	NQ		175	87 100 100	95 (%) 20.5 (%) 100	(%) .								
173.24	White, strong, slightly weathered,					$\left \right\rangle$	173											
172.83 17.40	END OF BOREHOLE	-FII	╞				1/3											
	Water level in Deep installation at elev. 185.48m OCT. 3, 2003. Water level in Shallow installation at elev. 186.85m OCT. 3, 2003																	
	Water level in Deep installation at elev. 185.51m OCT. 31, 2003. Water level in Shallow installation at elev. 185.41m OCT. 31, 2003.																	
	Abandoned Oct. 31, 2003.																	

RECORD OF

G.W.P.	3147-06-00	LOC	ATIC	DN _	1	N 477047	'8.9 ;E
DIST	HWY _6	BOF	REHC	DLE TY	PE	POWER	AUGE
DATUN	GEODETIC	DAT	Ε_		(October 3	3, 2003
	SOIL PROFILE		5	SAMPL	ES	R.	LE
ELEV DEPTH		STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS	ELEVATION SCA
0.00	ASPHALT						
	(FiLL), sity sand and crushed gravel Compact Grey		1	ss	26		
188.85 1.22	(FILL), clayey silt, trace sand,						18
	mottled Firm		2	ss	6		
	Brown and grey		-		-		18
187.48			3	SS	8		
2.59 187.17	TOPSOIL, clayey		ŀ				
2.90	Black CLAYEY SILT, trace sand	W	4	ss	9	1	18
186.56 3.51	Stiff Brown	<u> </u>			-		
	SAND, fine, some silt, trace gravel Compact		5	SS	22		19
185.65	Brown						
4.42	SANDY SILT, some gravel Compact		6		22		
	Brown						18
184.68 5.39	SANDY SILT, with angular gravel,						
	cobbles Dense Brown					Ţ	18
183.21			7	SS	49		
6.86	END OF BOREHOLE Water level encountered at elev. 184.28m OCT. 3, 2003.						

+ ³, \times ³: Numbers refer to O ^{3%} STRAIN AT FAILURE Sensitivity

9 :E 267978.8 ORIGINATED I GER, SOLID STEM (UNCASED) COMPILED BY 003 CHECKED BY 003 CHECKED BY 011 20 40 60 80 100 Liau Y X	
GER, SOLID STEM (UNCASED) COMPILED BY 003 CHECKED BY UNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC MATURAL CONTENT 20 40 60 80 100 LIQUID VALUE SHEAR STRENGTH KPa 0 UNCONFINED + FIELD VANE 0 UNCONFINED + FIELD VANE 20 40 60 80 100 VALUE V	BY <u>DJM</u>
003 CHECKED BY PUNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL MOISTURE LIQUID LIMIT 20 40 60 80 100 SHEAR STRENGTH kPa o UNCONFINED + FIELD VANE 20 VATER CONTENT (%) 10 Y 189 0 0 0 0 188 0 0 0 0 188 0 0 0 0 188 0 0 0 0 187 0 0 0 0	WDF
UPYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL MOISTURE LIQUID 20 40 60 80 100 LIQUID 20 40 60 80 100 SHEAR STRENGTH kPa • QUICK TRIAXIAL × LAB VANE 20 40 60 80 100 VATER CONTENT (%) 10 20 30 Y kN/m ³ 189 • • • • • • • • • • • • • • • • • • •	DJM
	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	0 12 65 23
185	
184	
0	

PROJE	ECT 07-1130-023-0			F	RECO	ORD	OF B	OREHO	LEI	No 4		1	OF 1	l	ME	TRIC	
G.W.P	3147-06-00	LOC	ATIC	N _	1	477025	51.9 ;E 2	67912.7							ORIG	INATED	BY <u>DJM</u>
DIST_	HWY _6	BOR	REHC	LE TY	PEF	POWER	AUGER	SOLID STEP	I (UNCA	SED)					COM	PILED B	WDF
DATU		DAT	Ë _		(October 3	3, 2003									CKED BY	DJM
	SOIL PROFILE	5	S	SAMPL	ES ທ	VATER	SCALE	DYNAMIC C RESISTANC 20	ONE PE E PLOT 40 6		ION 	PLAST LIMIT		URAL STURE	LIQUID LIMIT	NIT	REMARKS &
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLO	NUMBER	ТҮРЕ	'N" VALUE		EVATION	SHEAR ST O UNCON	RENG ⁻ FINED	ΓΗ kPa + Fl L × L/	IELD VANE		TER CO	w o ONTEN	w _∟ 	[⊃] ⊮ γ	GRAIN SIZE DISTRIBUTION (%)
190.86	PAVEMENT SURFACE	0)			-	0	Ш	20	40 6	80 80	100		10 :	20 ;	30	kN/m ³	GR SA SI CL
0.20	(FILL), silty sand and crushed gravel Dense Grey																
0.91	(FILL), sandy silt, trace to some clay, trace gravel and brick Loose to compact		1	SS	8		190						0				
	Brown		2	SS	5		189						o				
			3	SS	9		188					c	>				
			4	SS	12		100							0			3 40 44 13
186.75	SILT, some sand, trace organic						187										
4.42	material Dark grey SANDY SILT, trace clay, trace gravel		5	SS	29		186						0				
185.37 5.49	Compact Brown SANDY SILT, trace clay, some groud, with pobles																
	Dense Brown and grey					<u> </u>	185										
184.00			6	SS	48		184					0					
6.86	END OF BOREHOLE Water level encountered at elev. 185.07m OCT. 3, 2003.																
1																	

Golder Associates London, Ontario

PROJECT 07-1130-023-0 G.W.P. 3147-06-00

DATUM GEODETIC

ELEV DEPTH

191.42 0.00 0.20

DIST_____ HWY _6___

SIDEWALK SURFACE CONCRETE

SOIL PROFILE

DESCRIPTION

RECORD OF ____LOCATION _____N 4770387.3 BOREHOLE TYPE ROTARY DRI DATE October 27, 2 SAMPLES STRAT PLOT NUMBER "N" VALUES VAT ТҮРЕ GROUND V CONDITI

185.51 Water Surface 5.91 WATER 184.93 shells 6.49 SANDY SILT, some gravel and 184.59 shells Brown and grey 1 CRey moderately strong, slightly to highly weathered DOLOMITIC 1 SHALE 3 CORE NQ 4 CORE 180.29 11.13 Light brown-grey, fresh, moderately strong, sypsiferous DOLOSTONE. 6	
180.21 Water Surrace 5.91 WATER 184.93 6.49 6.49 SANDY SILT, some gravel and shells Brown and grey 1 Grey, moderately strong, slightly to highly weathered DOLOMITIC SHALE 2 SHALE 3 CORE NQ 4 CORE 180.29 11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE. 5	
184.93 6.49 SANDY SILT, some gravel and shells 184.59 shells 6.83 Brown and grey Grey, moderately strong, slightly to highly weathered DOLOMITIC 1 SHALE 2 3 CORE 4 CORE 180.29 11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE. 5	
1030 SANDY SILT, some gravel and shells 6.83 Brown and grey 6.83 Brown and grey 1 CORE Grey, moderately strong, slightly to highly weathered DOLOMITIC SHALE 1 CORE 1 CORE <td></td>	
184.59 shells 6.83 Brown and grey Grey, moderately strong, slightly to highly weathered DOLOMITIC 1 SHALE 2 CORE NQ 4 CORE 1 CORE	
Grey, moderately strong, slightly to highly weathered DOLOMITIC SHALE 10.29 11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE.	-
180.29 11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE.	_
180.29 11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE.	
180.29 11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE. Image: Constant of the strong stro	
11.13 Light brown-grey, fresh, moderately strong, gypsiferous DOLOSTONE.	
Gypsum occurs as laminae and nodules	
14.35 White, medium strong, fresh, nodular GYPSUM with dolomitic shaley 9 Dartings. 9 Light brown grey, fresh, moderately 9	

B	OF	RE	H	CL	E	N	lo :	5		1	OF 2	ME	TRIC	
;E 20	679	47.7	,									ORIG	INATED I	BY DJM
RILLIN	IG 8	& N\	N C.	ASI	NG							COM	PILED BY	WDF
2003	- 0	ctob	er 2	28, 2	2003	3						CHEC	KED BY	DJM
ELEVATION SCALE	DY RE S⊢ ⊙	IEA		4 STF NF K TF 4		PEI OT 6 JGT D XIAL 6		ATION 80 a FIEL LAB 80	100 D VANE VANE 100	PLASTI LIMIT W _P WAT		LIQUID LIMIT W _L T (%)	K Meight	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
191														
190														
189														
188						_								
187														
186														
185						_								
184		66 49		0 20		0 11								
183		07		-										
100		60		15		0								
102						_								
181	T.C.R. (%)	40	S.C.R. (%)	9	R.Q.D. (%)	0								
180		39		8		0								
179		94		70		55								
178		83		53		37								
177		89		70		47								
				_										

+ ³, × ³: Numbers refer to O^{3%} STRAIN AT FAILURE

PROJE	CT 07-1130-023-0	_		R	RECO	ORD	OF B	ORE	HOL	.E 1	No 5	5		2 (DF 2		ME	TRIC	
G.W.P.	3147-06-00	_ LOC	ATIC	N _	1	477038	37.3 ;E 2	67947.	7								ORIG	INATED	BY DJM
DIST_	HWY _6	_ BOR	REHC	LE TY	PEF	ROTARY	DRILLI	NG & N	w CASI	NG							COM	PILED B	Y WDF
DATUN	GEODETIC	_ DAT	E _		(October 2	27, 2003	- Octo	ber 28, 2	2003							CHEC	KED BY	DJM
	SOIL PROFILE	PLOT	BER	SAMPL	ES NES	D WATER	ON SCALE	DYNA RESIS	MIC CO STANCE			TION 0 10	00	PLASTIC LIMIT W _P	NATI MOIS CON	URAL STURE TENT W	LIQUID LIMIT W _L	UNIT WEIGHT	REMARKS & GRAIN SIZE
EPTH	DESCRIPTION	STRAT	NUME	ТҮР	"N" VAI	GROUN CONE	ELEVATI	0 U • Q	NCONF UICK T 20 4	INED RIAXIAI 0 6	+ _ × i0 8	FIELD V LAB VA 0 10	VANE NE 00	WAT	ER CC	o DNTEN 20 (T (%)	γ kN/m³	GR SA SI C
75.72	strong, gypsiferous DOLOSTONE. Gypsum occurs as laminae and nodules		9	CORE	NQ		176	T.C.R. (%)	S.C.R. (%)	(%) <u>1</u> 47 0.2									

Golder London, Ontario

PROJECT 07-1130-023-0 G.W.P. 3147-06-00

RECORD OF ____ LOCATION _____ N 4770313.9 BOREHOLE TYPE ROTARY DRI

	DIST_	HWY _6	BOR	REHC	DLE TY	PE	ROTARY	DR
	DATUN	GEODETIC	DAT	E _		(October 2	28, 2
		SOIL PROFILE	_	5	SAMPL	ES	ER (l
	ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WAT CONDITIONS	
	191.27 0.00 0.15	SIDEWALK SURFACE CONCRETE	1.00					
	0.15							
	185.55 5.72 185.23 6.04	Water Surface WATER CONCRETE						
	0.01			1	CORE	NQ		
	<u>184.44</u> 6.83	Grey, moderately strong, slightly weathered DOLOMITIC SHALE. Moderate to low recovery in the form of cylindrical core and angular		2	CORE	NQ		
	102.10	tragments.	Ē	3	CORE	NQ		
	183.10	Very low recovery of angular, vuggy DOLOSTONE fragments.		4	CORE	NQ		
	9.69 9.69 180.78 10.49 10.64	White, medium strong, fresh nodular GYPSUM with dolomitic shaley partings. Light brown-grey. fresh, medium strong, gypsiferous DOLOSTONE. Gypsum occurs as nodules.		5	CORE	NQ		
	180.07 11.20	Grey, fresh, medium strong DOLOMITIC SHALE	疅	6	CORE	NQ		.
MIO.GDI 1/3/08		Light brown-grey, fresh, medium strong, gypsiferous, laminated DOLOSTONE.		7	CORE	NQ		
7711300230.GPJ LDN_	176.97			8	CORE	NQ		
	14.30 176.37	White and light brown, fresh, medium strong, nodular GYPSUM with some dolomitic shale bands.		9	CORE	NQ		

Continued Next Page

B	OF	RE	H	OL	E	Ν	lo 6	6		1 (OF 2		ME	TRIC	
;E 20	6792	22.9)										ORIG	INATED I	BY DJM
RILLIN	IG 8	& Nı	N C	ASI	NG								COM	PILED BY	WDF
2003	- 00	ctob	er 2	29, 2	2003	3							CHEC	CKED BY	DJM
ELEVATION SCALE	DY RE SH 0	NAI SIS 2 IEA UN QI 2		STF ONF K TI		PEI OT IGT D XIAL		TION 1 30 1 FIELD LAB V. 30 1	00 VANE ANE 00	PLASTIN LIMIT W _P I WAT	C NATU MOIS CON V V TER CC	JRAL TURE TENT V DNTEN		NNIT A WEIGHT	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
191															
190															
189															
188															
187															
107															
186						_									
185		_													
		63		32		0									37.4 MPa
		68		28		19									
184															
		36		20		0									
183					-										
182		7		0		0									
181	(%)	78	(%)	31	(%)	16									
	T.C.R.		S.C.R.		R.Q.D.										
180		100		80		80									
		83		68		32									
179															
		-				Η									
178															
		97		83		63									
177															
		95		80		57									

PROJI	ECT07-1130-023-0	_		R	ECC	ORD	OF B	ORE	HOL	E N	lo 6	;		2 (OF 2		ME	TRIC	
G.W.F	3147-06-00		ATIC	DN _	١	477031	13.9 ;E 2	67922.	9								ORIG	INATED	BY <u>DJM</u>
DIST	HWY _6	BOR	REHC	DLE TY		ROTARY	DRILLI	NG & N	w CASI	NG							COM	PILED B	WDF
DATU	M GEODETIC	DAT	E _		C	October 2	28, 2003	- Octol	oer 29, 2	2003							CHEC	CKED BY	DJM
	SOIL PROFILE		S	SAMPL	ES	ER (ALE	DYNA RESIS	MIC CC	NE PE		TION		PI ASTI		URAL		F	REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATI CONDITIONS	ELEVATION SC/	2 SHEA 0 U • Q	AR STF NCONF UICK TF 20 4	0 6 RENGT INED RIAXIAL 0 6	0 8 TH kPa + - × 0 8	0 10 FIELD V LAB VA 0 10	/ANE NE 0	WAT	ER CC	TURE TENT N DOMTEN 20 3	LIMIT W _L 	Η9ΙΑΜ Υ kN/m ³	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
14.90 175.48	Light brown-grey, fresh, medium strong, laminated, gypsiferous DOLOSTONE. Gypsum occurs as beds, bands and nodules.		9	CORE	NQ		176	T.C.R. (%)	S.C.R. (%)	R.O.D. (%) 57									
15.79	END OF BOREHOLE																		

Lon	don, Ontario						
PROJ	JECT 07-1130-023-0			F	RECO	ORD (C
G.W.I	P3147-06-00	LO	CATIC	DN _	1	N 477034	2
DIST	HWY _6	ВО	REHC	LE TY	'PEI	ROTARY	C
DATU		DA	TE _		(October 3	0
	SOIL PROFILE		5	SAMPL	ES.	R	
ELEV	DESCRIPTION	LOT	1BER	Ш	ALUES	ND WATE DITIONS	

DATUM	GEODETIC	DAT	E _		(October 3	30,
	SOIL PROFILE		5	SAMPL	ES	S ER	
ELEV DEPTH		STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WAT CONDITIONS	
0.00	CONCRETE	1.12					
185.45 5.99 184.93 6.55	Water Surface WATER COBBLES AND BOULDERS						
	laminated, vuggy DOLOSTONE. Law recovery in the form of angular fragments.		1	CORE	NQ		
			2 3	CORE	NQ		
181.75			4	CORE	NQ		
9.69 180.71	Very low recovery of angular, vuggy DOLOSTONE fragments.		5	CORE	NQ		
180.38	laminated DOLOMITIC SHALE.		6	CORE	NQ		
11.23	Grey to light brown-grey gypsiferous DOLOSTONE. Poor recovery, broken core.		7	CORE	NQ		
12.34 178.46 12.98 177.18	Grey, moderately strong, finely laminated DOLOMITIC SHALE. Light brown-grey, fresh, strong, laminated, gypsiferous DOLOSTONE. Gypsum occurs as laminae and nodules.		8	CORE	NQ		
14.26	END OF BOREHOLE						

) (of B	OF	RE	H	ЭL	E	Ν	lo	7			1	OF 1		ME	TRIC	
034	2.4 ;E 2	679	44.4	ŀ											ORIG	INATED I	BY <u>DJM</u>
RY	DRILLI	NG a	& N\	N C.	ASI	NG									COM	PILED BY	WDF
ər 3	0, 2003	- 0	ctob	er 3	81, 2	2003	3								CHEC	KED BY	DJM
CONDITIONS	ELEVATION SCALE	DY RE SH 0			4 STF ONF K TH 4		PEI OT IGT IGT D XIAL 6		ATI 80 Pa FI LA 80	ON 1 ELD \B V/ 1	VANE ANE 00		IC NAT MOIS CON	URAL STURE ITENT W O ONTEN	LIQUID LIMIT W _L T (%)	k∑ weight	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	191 190																
	189																
	188																
	187																
	186 185																
	100																
	184		29 9		0		0										
	182																
	103		40		7		0										
	182		57		0		0										
	181	T.C.R. (%)	24	S.C.R. (%)	16	R.Q.D. (%)	0										
			0		0		0										
	180		44		7		0										
	179	\vdash	\vdash									\vdash					
	178		85		71		58										
								_									
	13*	L3	Nu	mbé	ers i	refe	r to			%		L	<u> </u>				
	+ ⁻ , X '		Se	nsiti	vity				ی ل	S	RAIN	at fai	LURE				

PROJE	CT07-1130-023-0			F	RECO	ORD	OF B	OF	REF	10	LE	Ν	lo 8	;		1	OF 2	2	ME	TRIC	
G.W.P.	3147-06-00	LOC	ATIC	N _	1	N 477041	I5.8 ;E 2	26796	8.9										ORIG	INATED	BY <u>DJM</u>
DIST_	HWY _6	BOR	EHC	LE TY	PE	ROTARY	DRILLI	NG 8	Nw	CA	SING								СОМ	PILED BY	WDF
DATUN	GEODETIC	DAT	E _		(October 3	31, 2003	- No	veml	ber	1, 20	03							CHEC	CKED BY	DJM
	SOIL PROFILE	LOT	ER	SAMPL	ES) WATER TIONS	ON SCALE	DYI RES						TION	00	PLASTI LIMIT W _P		URAL STURE ITENT W	LIQUID LIMIT WL	UNIT VEIGHT	REMARKS & GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRAT F	NUMB	ТҮРІ	"N" VAL	GROUNE	ELEVATIO	о •		CK	I REI IFINE TRIA		н кра + - ×			WA1			IT (%)	Ŷ	DISTRIBUTION (%)
191.23 0.00	SIDEWALK SURFACE CONCRETE						101	-	20		40	-	0 8					20 .	30	kN/m ³	GR SA SI CL
0.18							190)													
							100	ľ													
							187														
185.84	Ground Surface						186	;	_		_										
5.39	FILL, silty sand some gravel, concrete, wood, cobbles and boulders																				
185.06 6.17	Brown CONCRETE	**	1	CORE	NO		185	; 🗌	100	1	00	55									22.7 MDa
								-													50.3 MPa
183.85 7.38	Light grey to dark grey, laminated DOLOMITIC SHALE. Moderate to low recovery as cylindrical core and angular broken core fragments.		2	CORE	NQ		184		80	3	10	19									33.5 MPa
	Surfaces are slightly weathered.		3	CORE	NQ	-	183 182		32	:	3	0									
			4	CORE	NQ		181	T.C.R. (%)	10	0°C.H. (%)	R.Q.D. (%)	0									
179.19 12.04	Light brown, fresh, medium strong, gypsiferous DOLOSTONE. Gypsum occurs as nodules and laminae.		5	CORE	NQ		180 179)	57	4	13	43									
			6	CORE	NQ	-	178	, ,	80	4	7	47									
177.61 13.62	White, fresh, medium strong, nodular to coliform GYPSUM and strong, fresh, light brown, laminated SHALEY DOLOSTONE with nodular		7	CORE	NQ		177	,	96	5	60	41									
176.75 14.48	gypsum. Light brown, fresh, medium strong, laminated, vuggy, gypsiferous		8	CORE					95	8	8	82									
	Continued Next Page					•	•	•				<u> </u>									•

PROJECT 07-1130-023-0 G.W.P. 3147-06-00

		REC	ORD OF
_	LOCATION		N 4770415.8
_	BOREHOLE T	YPE _	ROTARY DR

DIS	т	HWY _6	BOR	EHC	DLE TY	PE _	ROTARY	DR
DAT	ГUМ	GEODETIC	DAT	E _			October 3	31, 2
		SOIL PROFILE		5	SAMPL	ES	Ľ	
ELE\ DEPT	/ H	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATE CONDITIONS	
		DOLOSTONE. Gypsum occurs as nodules and laminae.		8	CORE	NQ		
175.2 16.0	23	Grey SHALE grading to light grey DOLOMITIC SHALE. Fresh, medium strong, occasional vugs. Nodular gypsum 16.82m to 19.92m depth.		9	CORE	NQ		
173.9 17.3 17.3	22	END OF BOREHOLE						

F B	OF	RE	HC	DL	E	١	lo 8	3		2 (OF 2		ME	TRIC	
8 ;E 2	679	58.9)										ORIG	INATED I	BY _DJM
RILLIN	NG 8	& Nv	v Ci	ASI	NG								COM	PILED BY	WDF
2003	- No	over	nbe	r 1,	200	13							CHEC	KED BY	DJM
ELEVATION SCALE	DY RE SH 0		VIIC TAN 0 IR S ICO JICI	CO NCE 4 STF ONF K TF 4		PEI OT IGT IGT KIAL		ATION 30 1 a FIELD LAB V 30 1	00 VANE ANE 00	PLASTIN LIMIT W _P I WAT	ER CC	JRAL TURE TENT V DNTENT	LIQUID LIMIT W _L 	A Weight ک	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
176															
175 174	T.CR. (%)	95	S.C.R. (%)	88	R.Q.D. (%)	77									

APPENDIX A2

LABORATORY TEST DATA

N_MTO_NEW GLDR_LDN.GDT

			U	ss	Sie	ve S	Size m	eshes/i	nch					size of	foner	ninas	in	hes				
20	00	100 6	050	40	30	20	16	108		4 3	3	/8 1/2	3/4	1 1.	5	3	4	6				
Τ					+	•	-	+														
			T																			
1						╫								+								
/																						
						╫		-	\square				-	-			+					
			-			╫								+					_			
-			-			+						-		+					_			
						╫								+			+		_			
+	\mathbb{H}		+	$\left \right $	+	+		-	+	╟┤			-	+	+		+		-			
+	$\parallel \mid$		+	$\left \right $	+	+		+	+		$\left \right $	-	+	+	+		\parallel		_			
-						╫						-	-	+								
						╫								+			+		-			
	0.	1				<u> </u>	1				1	10					10	0				
R	AIN	N SIZE.	mm	1																		
	Image: Control of the second secon																					
			S	AN	D S	SIZE	E					GRA	VEL	SIZE	1			Size				
	Image: Sample clev (m) 4 10 100 0.1 1 10 100 Call Size, mm Image: Sample clev (m) 3 3 D DLE SAMPLE clev (m) 4 186.8 Image: Sample clev (m) 4 186.8 180.5 Image: Sample clev (m) 4 186.8 180.5 Image: Sample clev (m) 4 186.8 180.5																					
		Image: Sand Size Image: Sand Size Image: Sand Size Cooble Image: Sand Size Image: Sand Size Image: Sand Size Cooble Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size Image: Sand Size </th																				
16	Image: stand sta																					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																					
0						⊑ v 1 0 6	(III) 2 0															
		4				100	0.0															
		PROJECT					A	RC	SYL	E	ST	RE	ET	SC	วบ	TH	ł					
		B	RI	00	θE	С	DVE	RΤ	HE	G	R/		R	IVE	ER	IN	C	A	E	DO	N	A
		TITLE							G٧	٧H	' 3	805	0-01	-00	U							
		1			(ЭF	RA	IN	SI	ZE	Ξ	DI	ST	RI	BI	J٦	ΓΙ	0	Ν			
		1							C	LA	١Y	ΈY	' SI	LT	•							
		4								PRO	DJEC	T No.		021-	3233	F	ILE	No.	0	21-323	3MT	O.GPJ
		Ć			G		140	1 *		PRO	DJEC	T No.	DF	021-	3233	F	ILE	No. .E	0: N	21-3233 I/A	3MT F	O.GPJ Rev.

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

Artestion: WELSTAF LOGRES Mient Numer Golden Associates Etc. (London) Address: 500 Nottinghtli Road London, ON 1.6K 3P1 Telephone: 518-471-5600 -FAX: 519-471-4707

Laboratory Work Order: 109983

This Certificate of Analysis is for the following:

Sample Received on: 31-Oct-2003

Reported on: 4-Nov-2003

Client Reference: Purchase Order: Qustation No.

The report contains the following sections: Section: 1. Case Narrative 2. Analytical Results 3. Methodology bundary 4. Certificate of Quality Control 5. Hold Time Report

Recults for solids samples are corrected for moisture and reported as dry weight.

We are proud to be Accredited by:

Standard Council of Canada (SCC) / CAEAL to ISO 1/025 (#1799) New York State (#11730)

water camples are discarded 4 weeks after the results have been reported. Solid camples are retained for 3 months. Storage for longer periods requires prior arrangement with the laboratory.

Carlers Hendersd-Stastav Products Namades

. The enclosed results relate only to the sample on its as reserved by the isburatory.

into repert may be reproduced in rule, Reproduction of a partial report much have the writtee approximation of the laboratory.

PSC Analytical Services

CERTIFICATE OF ANALYSIS - SECTION 1

Attention: MR. STAN LOOMIS Tent Name: Golden Associates Ltd. (London) Address: 500 Nottinghill Road London, ON N6K 3P1 Telephone: 519-471-9600 FAX: 519-471-4707

Laboratory Work Order: 109983

Sample(s) Received on: 31-Oct-2003

imple Shipment Receipt and Login:

Temperature on receipt was 12.6°C. The maximum allowable temperature is 10°C according to Canadian regulations or guidance documents. Samples submitted to the laboratory soon after sampling are exempt, provided that cooling has been initiated. Cooling is not required for certain situations such as: Waste for classification or specific matrices or tests such as PCB in oil.

There are no other notable comments.

ample Analysis:

No exceptions were noted during analysis.

eneral Comments: None.

> PSC Analytical Services 921 Leathorne Street, London, Ontario, Canada N5Z 3M7 (519) 686-7558 1-800-268-7396 FAX: (519) 686-6374 Refer to the cover page for a list of report contents.

CASE NARRATIVE

Reported on: 4-Nov-2003

CERTIFICATE OF ANALYSIS - SECTION 2

ANALYTICAL RESULTS

lient:(1093) Gol	der Associates Ltd. (Lo	ndon). London	Reported: 4-Nov-2003 Page: 1 of 1
Attention: Client Referen Work Order:	MR. STAN LOOMIS ce: 109983		Purchase Order: Date Received: 31-Oct-2003 Sample Type: Liquid
Sample #	Test	Result	Units EQL Comment
03-A036202	Sample Description: 0	21-3233 BH2	Date & Time Sampled: 31-Oct-2003
	pH Value Sulpoate as SO4	7.58 1330	pH units 0.1 ma/u 2

PSC Analytical Services

CERTIFICATE OF ANALYSIS - SECTION 3

С	lient:(1093) Golder	Associates Ltd. (Loncon). Londor	Reported: 4-Nov-2003	Page: 1 of 1
	Attention: Client Reference: Work Order:	MR. STAN LCOMIS 109983	Purchase Order: Date Received: 31-Oct-2003 Sample Type: Liquid	
+	Test	Methodology. Reference	Instrument	Analyst
L	pH Value	Electrometric Measurement EPA SW846 9040A	Orion pH/ISE Meter 710A	C. Lanaus
	Sulphate as SO4	Automated Methyl Thymol Blue Colorimeth EPA SW846 9036	ry - Technicon AA II - SO4	A.Ivanovic

EQL Estimated Quantitation Limit

Refer to the cover page for a list of report contents.

PSC Analytical Services 921 Leathorne Street, London, Ontario, Canada, N5Z 3M7 (519) 686-7558 1-800-268-7396 FAX (519) 686-6374 | Test procedures are based on the above references.

EXPLANATION OF CODES:

| EPA - US Environmental Protection Agency

SM - Standard Methods for the Analysis of Waters and Wastewater

PSC Analytical Services 921 Leathorne Street, London, Ontario. Canada N5Z 3M7 (519) 686-7558 1-800-268-7396 FAX (519) 686-6374 Refer to the cover page for a list of report contents.

METHODOLOGY SUMMARY

MOE - Ontario Ministry of the Environment P_ - Philip Analytical Services Location

PSC Analytical Services

CERTIFICATE OF ANALYSIS - SECTION 4

Golder Associates Ltd. (London) MR. STAN LOOMIS (lient: Contact:

Liquić Metrixo

CERTIFICATE OF QUALITY CONTROL

A Nov-2003 109983 Date Reported: Work Order:

Client Reference

		_	Process	Blank	Process %	Recovery		Maı	trix Spike				Duplicate		
Parameter	EQL	Units	Result	Upper Limit	Lo	wer Upper nit Limit	Spike ID	Result	 Target	Lower Limit	Upper Limit	Duplicate Duplicate 1D	Original Result	Duplicate Result	0C Flag
pi! Value	0.1	IpH units			100.12 98	.0 102.0			 			03-A036216	8.65	8.64	
pH Value	[0.]	IpH units			100.50 98	.0 102.0						03-A036164	7.90	7.92	
pH Value	10.1	IpH units			100.75 98	.0 102.0				_		03-A036160	7.31	7.33	
ipH Value	0.1	IpH units			100.75 98	.0 1102.0						03-A035987	8.22	8.24	
Sulphate as SO4	2	mg/L	1.	2	95.65 85	.0 115.0	03-F036043	65.	60.	48.	72.	03-F036043	24.	23.	

of Page: Not Applicable < Spike Duplicate (MSD) NA Denotes No (MS) and Matrix S S-Matrix Spike and/or D-Duplicate indicates the performance of a Matrix Spike UC Flag(s) pertain to B-Process Blank. R-Process % Recovery. When two values exist for the same Spike ID and parameter it Refer to the cover page for a list of report contents.

Ĺ

FAX (519) 686-6374 1-800-268-7396 7558 PSC Analytical Services Ontario, Canada N5Z 3M7 (519) 686-Leathorne Street. London. 921

PSC Analytical Services

CERTIFICATE OF ANALYSIS - SECTION 5

ONTARIO CONTAMINATED SITES

Client:(1093) Golder Associates Ltd. (London). London

Attention: Client Reference:	MR. STAN LOOMIS		
Analytical Test	s Date Analyzed	Hold Time (in days)	Actual Time (in days)
The OMOEE Guidanc 60 days. No crite reported.	e Document on Contamin ria is specified for in	ated Sites (1 norganic tes	May 1996) red ts on soils.
C3-A036202	Sample Type: L	iquid	
pH Value	1-Nov-2003	14	1
Sulphate as SO4	4-Nov-2003	30	4

When the sampling date is not supplied, the hold time is calculated from the date received. Refer to the cover page for a list of report contents. PSC Analytical Services 921 Leathorne Street, London, Ontario, Canada N5Z 3M7 (519) 686-7558 1-800-268-7396 FAX (519) 686-6374

HOLD TIME REPORT

Reported: 4-Nov-2003

Page: 1 of 1

Purchase Order: Date Received: 31-Oct-2003 Sample Type: Liquid

Exceeded Comment

quires all soils for organic parameters be analyzed within This reference may or may not be applicable to the samples

Date Sampled: 31-Oct-2003

December 15, 2003

Photo 1

Borehole No. 2 – Split spoon in rock Elevation 178.31m to 177.85m. Photo 2

APPENDIX B

PHOTOGRAPHS

- 1 -PHOTOGRAPHS

- 2 -

021-3233

PHOTOGRAPHS

Borehole No. 5 – Rock core Photo 3 Elevation 184.59m to 175.72m.

Photo 4 Borehole No. 8 – Rock core. Note concrete. Elevation 185.29m to 173.92m.

Photo 5: Borehole No. 101 - Rock Core. Possible concrete to approximate elevation 184.0 metres. Elevation 184.87 metres to 173.93 metres.

Photo 6: Borehole No. 102 - Rock Core. Concrete to approximate elevation 184.0 metres. Elevation 184.63 metres to 175.67 metres.

Photo 7: Borehole No. 103 - Rock Core. Concrete to approximate elevation 183.9 metres. Elevation 185.18 metres to 175.70 metres.

Photo 8: Borehole No. 104 – Rock Core. Elevation 185.96 metres to 194.04 metres.

Photo 9: Borehole No. 105 - Rock Core. Concrete to approximate elevation 183.8 metres. Elevation 185.27 metres to 175.58 metres.

Photo 10: Borehole No. 106. Concrete to approximate elevation 186.0 metres. Elevation 185.38 metres to 174.23 metres.

UNCONFINED COMPRESSION TEST (UC)

PROJECT NUMBER	07-1130-0023
BOREHOLE NUMBER	104
	TEST CON
MACHINE SPEED, mm/min	-
DURATION OF TEST,min	>2 <15
	SPECIMEN INF
SAMPLE HEIGHT, cm	9.80
SAMPLE DIAMETER, cm	4.72
SAMPLE AREA, cm ²	17.50
SAMPLE VOLUME, cm ³	171.48
WET WEIGHT, g	404.26
DRY WEIGHT, g	384.64
VISUAL	INSPECTION

APPENDIX C

LABORATORY TEST DATA

-

STRAIN AT FAILURE, %

REMARKS:

SAMPLE IDENTIFICATION

	SAMPLE NUMBER	-
	SAMPLE DEPTH, m	12.4-12.6
CONE	DITIONS	
	TYPE OF SPECIMEN	Rock Core
	L/D	2.08
EN INF	ORMATION	
	WATER CONTENT, (specimen) %	5.10
	UNIT WEIGHT, kN/m ³	23.11
	DRY UNIT WT., kN/m ³	21.99
	SPECIFIC GRAVITY, assumed	2.70
	VOID RATIO	0.20

FAILURE SKETCH

TEST RESULTS

COMPRESSIVE STRESS, MPa

21.6

DATE:

7/15/2007

FIGURE C-1

UNCONFINED COMPRESSION TEST (UC)

.

UNCONFINED COMPRESSION TEST (UC)

SAMPLE		ICATION
	• • • • • • • • • • • • • • • • • • • •	10/11/0/1

PROJECT NUMBER	07-1130-0023	SAMPLE NUMBER	-
BOREHOLE NUMBER	106	SAMPLE DEPTH, m	12.4-12.5
	TEST	CONDITIONS	
MACHINE SPEED, mm/mir	ı –	TYPE OF SPECIMEN	Rock Core
DURATION OF TEST, min	>2 <15	L/D	2.14
	SPECIME	N INFORMATION	
SAMPLE HEIGHT, cm	10.10	WATER CONTENT, (specimen) %	4.40
SAMPLE DIAMETER, cm	4.72	UNIT WEIGHT, kN/m ³	23.33
SAMPLE AREA, cm ²	17.50	DRY UNIT WT., kN/m ³	22.35
SAMPLE VOLUME, cm ³	176.72	SPECIFIC GRAVITY, assumed	2.70
WET WEIGHT, g	420.62	VOID RATIO	0.18
DRY WEIGHT, g	402.89		
	VISUAL INSPECTION	FAILURE SKETCH	

$\langle \rangle$	

	SAMPLE IDE	INTIFICATION	
PROJECT NUMBER	07-1130-0023	SAMPLE NUMBER	-
BOREHOLE NUMBER	106	SAMPLE DEPTH, m	15.4-15.6
	TEST CO	NDITIONS	
MACHINE SPEED, mm/min	-	TYPE OF SPECIMEN	Rock Core
DURATION OF TEST, min	>2 <15	L/D	2.07
	SPECIMEN IN	NFORMATION	
SAMPLE HEIGHT, cm	9.72	WATER CONTENT, (specimen) %	9.10
SAMPLE DIAMETER, cm	4.70	UNIT WEIGHT, kN/m ³	22.59
SAMPLE AREA, cm ²	17.35	DRY UNIT WT., kN/m ³	20.70
SAMPLE VOLUME, cm ³	168.64	SPECIFIC GRAVITY, assumed	2.70
WET WEIGHT, g	388.52	VOID RATIO	0.28
DRY WEIGHT, g	356.11		
VISUAL	. INSPECTION	FAILURE SKETCH	

	TEST RES	ULTS			TEST
STRAIN AT FAILURE, %	-	COMPRESSIVE STRESS, MPa	25.4	STRAIN AT FAILURE, %	-
REMARKS:		DATE:	7/15/2007	REMARKS:	

FIGURE C-2

,

FAILURE SKETCH

RESULTS

COMPRESSIVE STRESS, MPa

24.4

DATE:

7/15/2007

.

FIGURE C-3

Golder Associates

UNCONFINED COMPRESSION TEST (UC)

FIGURE C-4

.

APPENDIX D

SETTLEMENT RISK ANALYSIS REPORT

07-1130-023-0

Golder Associates Ltd.

309 Exeter Road, Unit #1 London, Ontario, Canada N6L 1C1 Telephone: (519) 652-0099 Fax: (519) 652-6299

December 2007

SECTION

1.0	INTRODUCTION	
2.0	EXISTING BRIDGE STRUCTU	RE2
	2.1 Superstructure Configurat	on2
	2.2 Foundation Conditions	2
3.0	SITE GEOLOGY AND STRATI	GRAPHY 4
4.0	SETTLEMENT RISK ANALYSI	S6
	4.1 Characteristics of Bridge S	6.5ettlement
	4.2 Structure Settlement Perfo	rmance Thresholds7
	4.3 Settlement Performance S	imulation7
	4.4 Conclusions	11
5.0	CLOSURE	

REFERENCES

LIST OF TABLES

TABLE I - Summary of Estimated Post-Construction Foundation Settlements TABLE II – Summary of Performance Simulation Results TABLE III – Examples of Societal Acceptance of Probability of Failure (Risk)

LIST OF FIGURES

- FIGURE 1 Site Location Map FIGURE 2 – Profile of Longitudinal Settlement FIGURE 3 – Transverse Differential Settlement FIGURE 4 – Characteristic Time Rates of Settlement
- FIGURE 5 Modes of Differential Settlement
- FIGURE 6 Cumulative Probability Distribution of Maximum "Twist" Angle

SETTLEMENT RISK ANALYSIS REPORT REHABILITATION OF THE ARGYLE STREET SOUTH BRIDGE FORMER HIGHWAY 6, CALEDONIA, SITE 9-2 GWP 3147-06-00, AGREEMENT NO. 3006-E-0049 MINISTRY OF TRANSPORTATION, ONTARIO - SOUTHWESTERN REGION

Submitted to:

Morrison Hershfield Limited **Consulting Engineers** 235 Yorkland Boulevard, Suite 600 Toronto, Ontario M2J 1T1

DISTRIBUTION:

- 8 Copies Morrison Hershfield Limited
- 2 Copies Golder Associates Ltd.

December 20, 2007

07-1130-023-1

TABLE OF CONTENTS

PAGE

FIGURE 7 – Cumulative Probability Distribution of Maximum Longitudinal Settlement

December 2007

- 1 -

INTRODUCTION 1.0

Golder Associates Ltd. (Golder) has been retained by Morrison Hershfield Limited (Morrison Hershfield) on behalf of the Ministry of Transportation, Ontario (MTO) to carry out a settlement risk analysis in conjunction with the design of the proposed rehabilitation of the Argyle Street South Bridge over the Grand River in Caledonia, Ontario. The location of the bridge is shown on the Site Location Plan, Figure 1.

The existing bridge has experienced settlement at the piers and abutment since its original construction in 1927. The ground conditions and an evaluation of the cause(s) of foundation settlement are described in more detail in a separate report Geocres No. 30M4-111, titled "Detail Foundation Investigation And Design Report, Rehabilitation Of The Argyle Street South Bridge, former Highway 6, Caledonia, Site 9-2, GWP 3147-06-00, Agreement No. 3006-E-0049, Ministry Of Transportation, Ontario – Southwestern Region", prepared by Golder Associates, Ltd., September, 2007 (Golder 2007). Consideration is currently being given to completing a rehabilitation of the existing bridge and foundations that would be suitable for a five to ten year period with the potential for full rehabilitation or the construction of a replacement structure to follow.

The purpose of the risk analysis is to estimate the potential for continued settlement of the bridge piers and abutments to adversely affect the performance of the bridge structure. The terms of reference for the work are outlined in Golder's Total Project Management (TPM) for Detail Design Services proposal P61-3174 dated December 11, 2006. The work was carried out in accordance with our Quality Control of TPM Services Plan, Agreement No. 3006-E-0049, dated February 13, 2007 (updated July 11, 2007).

EXISTING BRIDGE STRUCTURE 2.0

Superstructure Configuration 2.1

Morrison Hershfield provided Golder with the April 1927 design drawings for the existing bridge. The existing bridge, constructed circa 1927, is a two lane, nine span structure carrying the northsouth directions of Argyle Street pedestrian and road traffic over the Grand River. The bridge is a designated heritage structure which was rehabilitated in 1984. Each span of the existing structure is about 22 metres long, for a total length of approximately 198.5 metres. The bridge is about 8 metres wide in the roadway area and about 12 m wide between the sidewalk handrails. In 2002, vehicle weight limits were posted since the bridge was found to be in an advanced state of deterioration that limited the load carrying capacity of the structure. Site photographs are provided in the aforementioned report.

Foundation Conditions 2.2

Based on the design drawings available for the existing bridge and observations made during the field investigation, the existing structure is founded on spread footings bearing on the bedrock surface. The existing deck surface is at about elevation 191.2 metres. The water level in the Grand River was at about elevation 185.7 metres during the current field investigation. All elevations in this report are referenced to geodetic datum.

Because of visually observable distortion in the structure, a survey of elevations along the bridge structure was carried out. This survey is described in greater detail in the Detail Foundation Investigations and Design Report (Golder 2007). The post construction settlements estimated from the current survey data and the 1927 design drawings are provided in Table I, below. These data indicate total settlements, Δ , of up to 159 mm on one side of the pier foundation, average pier foundation settlements of up to 124 millimetres, with transverse differential settlements (one side of a pier to the other side) of as much as 80 millimetres at individual piers or abutments. Figure 2 provides a plot of the estimated settlements along the profile of the bridge and Figure 3 presents a frequency histogram of the transverse differential settlement of foundation units.

Although the pier footings are supported on weathered and weak rock that has had gypsum removed by dissolution, the foundation analysis (Golder 2007) concluded that there is sufficient resistance currently offered by the surficial bedrock to adequately support the piers under the currently applied loads, albeit with some apparent post construction settlements. However, the dolomitic shale and dolostone rock on which the piers are founded are susceptible to some potential ongoing deterioration. These effects are expected to be time dependent and will cause a reduction in geotechnical bearing resistance with time. Similarly, it was concluded that a potential exists for ongoing gypsum dissolution causing additional structure movements. No sinkholes or solution cavities were observed during the drilling investigations carried out on site.

- 3 -

The Detail Foundation Investigation and Design Report (Golder 2007) concluded that based on the available borehole information and experience with sites in the surrounding area, the potential for significant sinkhole and solution cavity formation in the bedrock in the zone of influence of the existing foundations within the proposed five to ten year design life is insignificant.

Table I. Summary of Estimated Post-Construction Foundation Settlements

	Estimated Total Settlement West	Estimated Total Settlement Fast	Transverse Differential	Maximum Longitudinal
Pier #	Side, Δ (mm)	Side, ∆ (mm)	Settlement (mm)	(mm)
North	55	98	43	
Abutment				76
1	131	117	14	70
	101	11,		36
2	95	140	45	
				54
3	85	85	0	
	104		10	19
4	104	94	10	55
5	159	84	75	55
Ū.	109	0.	, .	24
6	140	60	80	
				111
7	30	60	30	
0	10	74	25	19
8	49	/4	25	50
South	30	15	15	59
Abutment	20			

December 2007

SITE GEOLOGY AND STRATIGRAPHY 3.0

Detailed descriptions of the subsurface conditions at the site are provided within the Detail Foundation Investigation And Design Report (September, 2007). A brief summary of these conditions is provided within this report for reference purposes, to allow an understanding of the mechanisms of settlement, and the inferences made regarding the probable mechanisms of future settlement.

The surficial soil deposits are comprised of the Wentworth Till sheet, a sandy silt to clayey silt till deposit with irregular interbeds of silty to sandy deposits. The advance of the glacial ice associated with the deposition of the till also scoured the bedrock surface, greatly influencing the present bedrock surface topography that underlies the area. In the area of the bridge site, the Grand River Valley is fully incised through the overburden to expose the underlying rock in the riverbed.

The site is underlain by Silurian-age dolomite, shaley dolomite and shale of the Salina Formation. The Salina Formation hosts the gypsum deposits of the Grand River Valley. The Salina Formation is underlain by the Guelph Formation. The strata are near flat lying with a gentle southward dip of approximately 0.5 per cent. The Salina Formation consists of six members (Members A, B, C, E, F and G). The D Member (halite salt strata of the Salina Formation) was not deposited in this area.

In summary, the subsoils at the abutments and approaches generally consist of variable thicknesses of pavements, fill and topsoil materials to between elevation 186 and 189 metres. These deposits are underlain by generally thin deposits of sand and gravel, sandy silt, silt, clayey silt and sand over the bedrock. At the pier locations, the bedrock is exposed below about 0.4 to 0.6 metres of water and/or thin sandy silt deposits. The bedrock surface was encountered at elevations between 183.6 and 184.9 metres at the borehole locations.

The rock cores obtained at the site consisted of beds of gypsum, shale, dolostone and mudstone. The predominant rock strata have been identified as:

- Unit 1 shale to dolomitic shale
- Unit 2 Dolostone/Gypsiferous Dolostone/Shaley Dolostone
- Unit 3 Gypsum
- Unit 4 Gypsiferous Mudstone

Recovery in the upper weathered portions of the boreholes was very low, which is typical of the area, and attributed to gypsum dissolution, normally characterized by voids and/or vuggy intervals. Poor recovery was not attributed to the drilling techniques. No sudden loss of drill pressure or other evidence of large voids in the rock was noted during drilling and coring.

December 2007

- 5 -

The Grand River water level was noted to vary from elevation 185.6 to 185.7 metres between

April 30 and May 2, though such levels are subject to significant seasonal fluctuations. Analytical testing following investigations conducted at the site indicated a groundwater pH value

of 7.58 and a sulphate concentration of 1330 milligrams per litre.

December 2007

SETTLEMENT RISK ANALYSIS 4.0

Rehabilitation of the existing Argyle Street (formerly Highway 6) bridge foundations has been planned as a short-term strategy for the crossing at this location. The proposed design service life of the short-term rehabilitation for the current structure is five to ten years. In separate studies concerning the future of this structure beyond the short-term future, the feasibility of an extensive rehabilitation or bridge replacement will be considered. There are three options under consideration for addressing the existing bridge foundations in the short term: do nothing except monitor the bridge, pressure grouting of the bedrock beneath the foundations, and installing micropiles to support the foundations on more competent rock found at lower elevations. A quantitative risk analysis was carried out in order to assist with decisions regarding the efficacy of completing foundation and bridge temporary and permanent repair options at various future time intervals. This risk analysis used data available at the time this report was prepared related to settlement, bridge conditions, and the thresholds of displacement at which damage to the structure of differing degrees could be expected based on structural analyses completed by Morrison Hershfield.

Characteristics of Bridge Settlement 4.1

The time-rate of settlement data available to complete a risk analysis is limited to only the initial bridge design and construction data as compared to the survey data gathered during the recent site investigations (Golder 2007). This results in a time period of some 80 years between known (or reasonably estimated) foundation elevations. Therefore, a number of simplifying assumptions were necessary to characterize the probable future settlement behaviour based on these measurements and plausible settlement mechanisms.

During subsurface investigations carried out at the site, no large solution cavities were found within a total of 121.7 m of coring through bedrock. Although the absence of relatively large solution cavities at borehole locations does not eliminate the potential for solution cavities to exist elsewhere, given that the majority of coring was completed at the foundation locations, it is reasonable to conclude that the probability of such solution cavities existing and being of a sufficient size to result in total foundation collapse is negligible.

The characteristics of the bedrock strata as found in the core samples indicate that the bedrock is composed of laterally extensive, though relatively thin, gypsum layers or laminae and nodules of gypsum within the shale, dolomitic shale, and dolostone rock formations. While cumulatively, the gypsum made up a significant proportion of the total rock mass, relatively large and laterally discontinuous zones of gypsum that might be subject to future dissolution were not identified during the investigations. These conditions suggest that the removal of gypsum and the subsequent compression of the remaining rock mineral matter is likely a relatively gradual process without a significant potential for sudden collapse.

- 6 -

December 2007

-7-

December 2007

Structure Settlement Performance Thresholds 4.2

Morrison Hershfield completed a structural analysis of the existing bridge design and determined two modes of potential settlement-induced damage. These are:

- 1. Transverse differential settlement of an individual pier (δ_{trans}) for example, the west side of a pier settles more than the east side of the pier. This differential settlement thus results in a rotational torque, or "twist", angle of the bridge deck, compounded if the adjacent pier supporting the other end of the span also settles but in a different rotational direction (θ) .
- 2. Longitudinal settlement of adjacent piers (δ_{long}) for example, Pier 5 settles in relation to Pier 6, causing the supporting beams and deck to tilt in a north to south direction.

It is understood that should total transverse differential settlement exceed about 175 mm, or a twist angle of about 0.82 degrees, the extreme fibre stresses in the deck beams may result in structural cracking. Though this structural cracking is considered by the structural analysis to not result in ultimate or catastrophic failure of the bridge span, it is of a magnitude that would lead to road closure due to sufficient concern regarding the structural integrity of the bridge and initiate subsequent repairs. In this case, then, the "failure" may be more representative of a serviceability failure rather than ultimate failure. The mode of failure arising from longitudinal settlement is of an ultimate-failure nature in that beyond a limit of about 305 mm of differential settlement between adjacent piers, the deck beams may slip from their bearings and off the piers. These modes of displacement are illustrated on Figure 5.

While these thresholds represent a useful means by which to evaluate the potential risk of damage to the structure from continued settlement, these thresholds are deterministic in nature (i.e., no uncertainty has been associated with these singular threshold values, e.g., probability of failure increasing as movement increases). Ranges of the structural performance thresholds for various assumptions of dimensional or material variability were not provided by Morrison Hershfield.

Settlement Performance Simulation 4.3

To complete a time-based analysis of future risks, some estimate of the time rate of settlement and its uncertainty was necessary. As previously discussed, there exist only two instances of known (or reasonably estimated) elevation data for the bridge piers, separated by a period of some 80 years. This intervening period was used to define the average rate of settlement for each of the measured pier and abutment locations, resulting in a total of 20 average rate of settlement values. It is presently uncertain whether the average rate of settlement exhibited at each measurement location is representative of a relatively smooth and continuous rate of settlement or a pattern of settlement in which long periods of stability are interrupted by relatively rapid, albeit small magnitude, settlements that occur in a single or series of "steps" to accumulate to the

observed total values. Therefore, three different scenarios regarding the settlement patterns were considered:

- process at each location.
- less probable than Scenarios 1 or 2.

The future settlement performance of the structure foundations was simulated using stochastic methods (e.g. Monte Carlo simulation) and the probabilistic settlement rate characterization as described above using a total of 10,000 trials for each assumption of settlement performance described above for the 5 and 10 year periods of interest. The simulated settlement values were then applied to each side (east and west) of each pier for simulated 5 or 10 year periods, thus allowing simulation of east-to-west differential settlement of each pier and the north-to-south differential settlement between piers for these two time periods. East-to-west differential settlements were converted into "twist" angles to which the deck and supporting frames may be subject by transverse rotations at adjacent piers (see Figure 5). All calculated settlements were added to current estimates of settlement, therefore describing the cumulative effect of such

1. A continuous, normal distribution of settlement rate was used to represent the time rate of settlement as shown in Figure 4 based on all measurements and assessed differential settlement. It was considered that use of a continuous distribution could reasonably represent low probability, relatively high rates of settlement that may not be adequately captured by the distribution of the limited measured data set ("extrapolated"). A mean value of 1.1 mm per year and standard deviation of 0.5 mm per year was used for simulating the cumulative settlement in repetitive estimates of settlement over given time periods. This continuous distribution was applied independently to each side of the individual pier foundation units, ignoring potential spatial correlations. This assumes a random, independent settlement

2. Normal distributions of settlement rate were assigned to each side of the individual piers assuming that each side of the individual piers would settle at a mean annual rate equal to its total settlement divided by 80 years with a standard deviation of 0.25 mm/year (half the value for the combined data of all piers). This approach is based on an assumption that those piers that have settled at the highest rates will continue to settle at the highest rates (i.e. the rates of settlement are spatially correlated). For example, if one pier is located in a section of the riverbed exposed to greater flows of water that have the potential to dissolve and remove gypsum more rapidly than in other areas, this pier may settle at a higher rate than others.

3. Each side of the individual piers was assumed to have undergone its estimated settlement in one event (worst case) over the course of the 80 years since the structure was built. This approach also assumes spatial correlation of settlement rates similar to Scenario 2 described above in that those piers that have experienced the worst settlement will experience the worst settlement in the future. It is understood that the structure, however, does not exhibit distress that might be consistent with such rapid settlements and, therefore, that this scenario may be -9-

settlements between 2007 and the future date (2012 or 2017), not just the incremental effects, because structural behavior will be determined by cumulative (not incremental) effects. The maximum twist angles and differential settlements amongst all piers were simulated.

The overall results of this simulation using Scenarios 1 and 2 are illustrated on Figures 6 and 7 in which cumulative probability distributions (percentile charts) are used to describe the potential for Scenarios 1 and 2. Scenario 3 is not illustrated because of the step-function nature of the distribution. Figure 7 illustrates the cumulative probability of north-to-south differential settlement from pier to pier for Scenarios 1 and 2. For example, there is a 90% probability that the maximum differential settlement between any two piers will be less than about 115 mm within the next 5 years or less than about 120 mm in the next 10 years for Scenario 1. The "twist" angle cumulative distribution summary shown in Figure 6 illustrates that the maximum angle ranges between about 0.40 and 0.65 degrees for the two assessed time periods for Scenario 1. Characteristic values of settlement and angular "twist" of the deck are provided in Table II, below.

December 2007

Table II. Summary of Performance Simulation Results

Deformation Mode	Maximum (of 10000)	Minimum (of 10000)	Mean	Standard Deviation	Struct Crite
	SCEN	4 <i>RIO</i> 1			
	5 Year	Period			
Max. δ_{long} (mm)	125	97	111	3	305
Max. Δ (mm)	173	156	164	2	
Max. θ (degrees)	0.60	0.43	0.52	0.02	0.8
Max. δ_{trans} (mm)	128	92	110	5	175
	10 Year	· Period			
Max. δ_{long} (mm)	138	84	111	7	305
Max. Δ (mm)	191	151	170	5	
Max. θ (degrees)	0.68	0.34	0.52	0.05	0.8.
Max. δ_{trans} (mm)	145	73	110	10	17:
	SCEN	ARIO 2 Pariod			
	s Tear	i erioù			
Max. δ_{long} (mm)	117	105	111	2	30:
Max. Δ (mm)	170	160	164	1	
Max. θ (degrees)	0.53	0.44	0.48	0.01	0.8
Max. δ_{trans} (mm)	113	93	103	2	17.
	10 Year	· Period			
Max. δ_{long} (mm)	124	99	111	3	30
Max. Δ (mm)	178	160	168	2	
Max. θ (degrees)	0.54	0.36	0.45	0.02	0.8
Max. δ_{trans} (mm)	114	77	96	5	17.
	SCENA 5 Year	ARIO 3 Period			
	5 1607	1 01100			
Max. δ_{long} (mm)	251	81	111	8	305
Max. Δ (mm)	318	159	160	11	
Max. θ (degrees)	1.18	0.31	0.52	0.05	0.8
Max. δ_{trans} (mm)	250	65	111	10	173
	10 Year	· Period			
Max. δ_{long} (mm)	251	81	113	17	30.
Max. Δ (mm)	2318	159	164	22	
Max. θ (degrees)	1.27	0.28	0.53	0.09	0.8
Max. δ_{trans} (mm)	270	59	113	18	17:

indicator values and can not be considered to be precise predications of future events.

Conclusions 4.4

The probabilistic settlement performance results are summarized in Table II for the full range of deformation simulations. For example, for Scenario 1 the longitudinal differential settlement is estimated to be 123 mm or less, and the "twist" angle about 0.60° or less (transverse settlement of 128 mm or less) given a probability of these values being exceeded of 10^{-4} for the simulated 5 year period. For the 10 year simulation period, the longitudinal and transverse differential settlement corresponding to a probability of being exceeded equal to 10^{-4} are about 136 mm and 145 mm, respectively. For Scenario 2 the differential settlement and "twist" angle values corresponding to a probability of being exceeded of 10^{-4} are on the order of 5 to 15% less than those for Scenario 1. For both Scenarios 1 and 2, these values are well below the structural thresholds provided by Morrison Hershfield. The probability of any threshold criteria being exceeded in Scenarios 1 and 2 is less than 10^{-5} . Scenario 3 is the most critical, indicating that the maximum transverse differential settlement threshold may be exceeded with a corresponding probability equal to about 7×10^{-3} for the 5 year time period and about 1 order of magnitude greater for the 10 year period. The probability of exceeding the catastrophic mode of failure for Scenario 3 is considered to be less than 10^{-5} for both time periods.

While the results summarized in Table II encompass the full simulated performance range, they do not adequately illustrate the small values of risk that are accepted by society for performance of engineered structures or some forms of transportation. Table III, below, provides some reference values for accepted annual probabilities of failure for various conditions. Based on the available information, threshold criteria, and reasonable, albeit simplifying assumptions, for the two time periods evaluated, the probability of catastrophic failure of the Argyle Street bridge is estimated to be well below the values indicated in Table III for foundation failure, by several orders of magnitude. These risk acceptability thresholds, however, must also take into account the duration of interest. Thus, for an annual risk threshold of 10^{-4} , the thresholds for a 5 year duration would be 5×10^{-4} and 10^{-3} for a 10 year duration. Using the available limited information and methods described above, it has been estimated that the foundation settlement is near what may be considered a societal acceptable annual probability of failure for the serviceability mode (transverse differential settlement) should it continue to settle for a total of 5 years or more into the future for the worst-case scenario (Scenario 3). It is understood that this mode of "failure" identified by Morrison Hershfield, however, constitutes closure of the bridge rather than catastrophic structural failure based on the provided thresholds and is more appropriately compared to the societal acceptance thresholds for financial loss. In this case, the societal acceptance for annual losses in the vicinity of \$20 million is on the order of 5×10^{-3} and, when related to the project durations under examination, the risk of failure for any of the examined scenarios is less by one half to one order of magnitude.

As noted previously, these probabilities of failure are based on deterministic thresholds of structural performance. It is recommended that the structural performance criteria be evaluated

with respect to potential uncertainty in as-built structural dimensions that may affect the catastrophic mode of failure resulting from longitudinal differential settlement (deck beams slipping from supports). Furthermore, it is recommended that the structural performance criteria for transverse differential settlement ("twist") be examined with respect to potential uncertainty in concrete and reinforcement strength and condition. It is understood that these as-built conditions will be measured during planned work on the bridge to be conducted within the next 5 years. Should the probability of structural failure or cracking (corresponding to the identified modes of displacement) based on the review of the as-built conditions, be considered equal to 10^{-4} or greater for threshold criteria values equal to or less than those defined in the paragraph above, the combined probability of failure from both sources of uncertainty (geotechnical and structural) should be reexamined.

The choice of when to rehabilitate the existing bridge foundations within the five to ten year period under consideration should be made by MTO considering the results presented above. It is recommended that MTO undertake a prudent course of action and complete a more detailed examination of the uncertainty associated with the structural performance thresholds based on measurements of the as-built conditions associated with both modes of failure. It is understood that this work will be undertaken within the next 5 years and that the structure settlements will be monitored through this duration. This will reduce the uncertainty associated with this analysis for defining failure thresholds for all modes of displacement. This may be particularly important if the probability of serviceability failure (unplanned road closure for repairs) being close to 1 in 1,000 for the 5 year period and 1 in 100 for the 10 year period approaches levels considered unacceptable by the MTO.

Table III. Examples of Societal Acceptance of Annual Probability of Failure (Risk)

	Approximate Societal Acceptable Annual Probability of Failure			
Category of Failure	Low End of Range ^{1, 3}	High End of Range ^{2, 3}		
Mine Pit Slopes	$2x10^{-2}$	$2x10^{-1}$		
Foundations	1×10^{-3}	1x10 ⁻²		
Dams	5x10 ⁻⁵	$2x10^{-4}$		
Commercial Aviation	1x10 ⁻⁶	$2x10^{-6}$		
\$2 M Financial Cost	$2x10^{-2}$	8x10 ⁻²		
\$20 M Financial Cost	5×10^{-3}	$2x10^{-2}$		
\$200 M Financial Cost	1x10 ⁻³	8x10 ⁻³		
Potential For 1 Fatality	1x10 ⁻³	1x10 ⁻²		
Potential For 10 Fatalities	1×10^{-4}	1x10 ⁻²		
Potential For 100 Fatalities	1x10 ⁻⁶	1x10 ⁻³		

NOTES: 1. Low end of range represents published values of societal accepted risks; 2. High end of range represents published values of risks that are marginally accepted by society; 3. Values compiled from Whitman (1984); Nielson, Hartford and MacDonald (1994); and US FHWA (2001); 4. Financial cost values expressed in current 2007 Canadian dollars.

- 13 -

December 2007

CLOSURE 5.0

This report was prepared by Dr. Storer Boone, P.Eng., with the technical oversight of Dr. William Roberds, the Project Manager, Mr. Philip R. Bedell, P. Eng. and the MTO Designated Contact Mr. Fintan J. Heffernan, P.Eng. This report presents the results of a technical risk analysis associated with potential foundation settlement of the Argyle Street Bridge over the Grand River in Caledonia, Ontario. The magnitudes of risk are associated only with the identified mechanism of settlement due to continued dissolution of gypsum from beneath the bridge foundations and addresses no other potential cause of structural or foundation failure. Furthermore, although the magnitude of risk has been technically quantified, this quantification is based on limited information and may need to be reviewed and revised as additional information becomes available. While it is considered that the results of this work represent a useful aid to decisions regarding rehabilitation of the structure, it can not be considered a guarantee that foundation failure and its consequent effects will not occur at the site within the identified time periods of study. Decisions made by Morrison Hershfield and the Ministry of Transportation Ontario as may be aided by this report must be made with the understanding of the limitations of this study.

GOLDER ASSOCIATES LTD.

Storer Boone, Ph.D., P. Eng. Associate

Philip R. Bedell, P. Eng. Principal

William Roberds, Ph.D., P. E. Principal

Fintan J. Heffernan, P.Eng. MTO Designated Contact

SJB/PRB/WR/FJH/cr n/active/2007/1130 - geotechnical/1130-0000/07-1130-023-1 mh - risk assessment argyle st bridge - caledonia/reports/07-1130-023-1/dec 20 07 - (final) settlement risk analysis.doc

Golder (2007). Detail Foundation Investigation And Design Report, Rehabilitation Of The Argyle Street South Bridge, Highway 6, Caledonia, Site 9-2, GWP 3147-06-00, Agreement No. 3006-E-0049, Ministry Of Transportation, Ontario – Southwestern Region, Golder Associates, Ltd., September, 2007.

Nielsen, N.M., Hartford, D.N., and MacDonald, D. (1994). Selection of tolerable risk criteria for dam safety decision making. Proc. 1994 Canadian Dam Safety Conference, Winnipeg, MB, Bitech Publishers, 355 – 369.

Whitman, R.V. (1984). Evaluating calculated risk in geotechnical engineering. Journal of the Geotechnical Engineering Division, ASCE, 110(2), 145 – 186.

REFERENCES

3		
	ARGYLE STREET SOUTH BRIDGE FORMER HIGHWAY 6, CALEDONIA GWP 3147-06-00	FIGURE

